direct product, metacyclic, nilpotent (class 2), monomial, 2-elementary
Aliases: C5×M4(2), C4.C20, C40⋊7C2, C8⋊3C10, C20.7C4, C22.C20, C20.22C22, (C2×C20).8C2, C2.3(C2×C20), (C2×C4).2C10, C4.6(C2×C10), (C2×C10).3C4, C10.19(C2×C4), SmallGroup(80,24)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C5×M4(2)
G = < a,b,c | a5=b8=c2=1, ab=ba, ac=ca, cbc=b5 >
(1 18 31 35 11)(2 19 32 36 12)(3 20 25 37 13)(4 21 26 38 14)(5 22 27 39 15)(6 23 28 40 16)(7 24 29 33 9)(8 17 30 34 10)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)
(2 6)(4 8)(10 14)(12 16)(17 21)(19 23)(26 30)(28 32)(34 38)(36 40)
G:=sub<Sym(40)| (1,18,31,35,11)(2,19,32,36,12)(3,20,25,37,13)(4,21,26,38,14)(5,22,27,39,15)(6,23,28,40,16)(7,24,29,33,9)(8,17,30,34,10), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40), (2,6)(4,8)(10,14)(12,16)(17,21)(19,23)(26,30)(28,32)(34,38)(36,40)>;
G:=Group( (1,18,31,35,11)(2,19,32,36,12)(3,20,25,37,13)(4,21,26,38,14)(5,22,27,39,15)(6,23,28,40,16)(7,24,29,33,9)(8,17,30,34,10), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40), (2,6)(4,8)(10,14)(12,16)(17,21)(19,23)(26,30)(28,32)(34,38)(36,40) );
G=PermutationGroup([[(1,18,31,35,11),(2,19,32,36,12),(3,20,25,37,13),(4,21,26,38,14),(5,22,27,39,15),(6,23,28,40,16),(7,24,29,33,9),(8,17,30,34,10)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40)], [(2,6),(4,8),(10,14),(12,16),(17,21),(19,23),(26,30),(28,32),(34,38),(36,40)]])
C5×M4(2) is a maximal subgroup of
C20.53D4 C20.46D4 C4.12D20 D20⋊7C4 D20.2C4 C8⋊D10 C8.D10
50 conjugacy classes
class | 1 | 2A | 2B | 4A | 4B | 4C | 5A | 5B | 5C | 5D | 8A | 8B | 8C | 8D | 10A | 10B | 10C | 10D | 10E | 10F | 10G | 10H | 20A | ··· | 20H | 20I | 20J | 20K | 20L | 40A | ··· | 40P |
order | 1 | 2 | 2 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 8 | 8 | 8 | 8 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 20 | ··· | 20 | 20 | 20 | 20 | 20 | 40 | ··· | 40 |
size | 1 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 2 | ··· | 2 |
50 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 |
type | + | + | + | |||||||||
image | C1 | C2 | C2 | C4 | C4 | C5 | C10 | C10 | C20 | C20 | M4(2) | C5×M4(2) |
kernel | C5×M4(2) | C40 | C2×C20 | C20 | C2×C10 | M4(2) | C8 | C2×C4 | C4 | C22 | C5 | C1 |
# reps | 1 | 2 | 1 | 2 | 2 | 4 | 8 | 4 | 8 | 8 | 2 | 8 |
Matrix representation of C5×M4(2) ►in GL2(𝔽41) generated by
18 | 0 |
0 | 18 |
40 | 36 |
23 | 1 |
1 | 9 |
0 | 40 |
G:=sub<GL(2,GF(41))| [18,0,0,18],[40,23,36,1],[1,0,9,40] >;
C5×M4(2) in GAP, Magma, Sage, TeX
C_5\times M_4(2)
% in TeX
G:=Group("C5xM4(2)");
// GroupNames label
G:=SmallGroup(80,24);
// by ID
G=gap.SmallGroup(80,24);
# by ID
G:=PCGroup([5,-2,-2,-5,-2,-2,100,421,58]);
// Polycyclic
G:=Group<a,b,c|a^5=b^8=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^5>;
// generators/relations
Export