Extensions 1→N→G→Q→1 with N=C3×D8 and Q=D5

Direct product G=N×Q with N=C3×D8 and Q=D5
dρLabelID
C3×D5×D81204C3xD5xD8480,703

Semidirect products G=N:Q with N=C3×D8 and Q=D5
extensionφ:Q→Out NdρLabelID
(C3×D8)⋊1D5 = C157D16φ: D5/C5C2 ⊆ Out C3×D82404+(C3xD8):1D5480,186
(C3×D8)⋊2D5 = D8×D15φ: D5/C5C2 ⊆ Out C3×D81204+(C3xD8):2D5480,875
(C3×D8)⋊3D5 = D83D15φ: D5/C5C2 ⊆ Out C3×D82404-(C3xD8):3D5480,877
(C3×D8)⋊4D5 = D8⋊D15φ: D5/C5C2 ⊆ Out C3×D81204(C3xD8):4D5480,876
(C3×D8)⋊5D5 = C3×C5⋊D16φ: D5/C5C2 ⊆ Out C3×D82404(C3xD8):5D5480,104
(C3×D8)⋊6D5 = C3×D8⋊D5φ: D5/C5C2 ⊆ Out C3×D81204(C3xD8):6D5480,704
(C3×D8)⋊7D5 = C3×D83D5φ: trivial image2404(C3xD8):7D5480,705

Non-split extensions G=N.Q with N=C3×D8 and Q=D5
extensionφ:Q→Out NdρLabelID
(C3×D8).1D5 = D8.D15φ: D5/C5C2 ⊆ Out C3×D82404-(C3xD8).1D5480,187
(C3×D8).2D5 = C3×D8.D5φ: D5/C5C2 ⊆ Out C3×D82404(C3xD8).2D5480,105

׿
×
𝔽