Copied to
clipboard

G = C3×D5×D8order 480 = 25·3·5

Direct product of C3, D5 and D8

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C3×D5×D8, D404C6, C2424D10, C12017C22, C60.190C23, C52(C6×D8), C84(C6×D5), C402(C2×C6), D4⋊D51C6, (D4×D5)⋊1C6, D41(C6×D5), (C5×D8)⋊2C6, (C8×D5)⋊1C6, C1514(C2×D8), (C15×D8)⋊6C2, (D5×C24)⋊6C2, D201(C2×C6), (C3×D40)⋊12C2, (C3×D4)⋊16D10, (C6×D5).85D4, C10.27(C6×D4), C6.181(D4×D5), D10.23(C3×D4), C30.340(C2×D4), C20.1(C22×C6), Dic5.7(C3×D4), (D4×C15)⋊16C22, (C3×D20)⋊18C22, (C3×Dic5).54D4, C12.190(C22×D5), (D5×C12).104C22, (C3×D4×D5)⋊8C2, C4.1(D5×C2×C6), C2.15(C3×D4×D5), C52C85(C2×C6), (C3×D4⋊D5)⋊9C2, (C5×D4)⋊1(C2×C6), (C4×D5).15(C2×C6), (C3×C52C8)⋊38C22, SmallGroup(480,703)

Series: Derived Chief Lower central Upper central

C1C20 — C3×D5×D8
C1C5C10C20C60D5×C12C3×D4×D5 — C3×D5×D8
C5C10C20 — C3×D5×D8
C1C6C12C3×D8

Generators and relations for C3×D5×D8
 G = < a,b,c,d,e | a3=b5=c2=d8=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >

Subgroups: 688 in 152 conjugacy classes, 58 normal (34 characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, C6, C6, C8, C8, C2×C4, D4, D4, C23, D5, D5, C10, C10, C12, C12, C2×C6, C15, C2×C8, D8, D8, C2×D4, Dic5, C20, D10, D10, C2×C10, C24, C24, C2×C12, C3×D4, C3×D4, C22×C6, C3×D5, C3×D5, C30, C30, C2×D8, C52C8, C40, C4×D5, D20, C5⋊D4, C5×D4, C22×D5, C2×C24, C3×D8, C3×D8, C6×D4, C3×Dic5, C60, C6×D5, C6×D5, C2×C30, C8×D5, D40, D4⋊D5, C5×D8, D4×D5, C6×D8, C3×C52C8, C120, D5×C12, C3×D20, C3×C5⋊D4, D4×C15, D5×C2×C6, D5×D8, D5×C24, C3×D40, C3×D4⋊D5, C15×D8, C3×D4×D5, C3×D5×D8
Quotients: C1, C2, C3, C22, C6, D4, C23, D5, C2×C6, D8, C2×D4, D10, C3×D4, C22×C6, C3×D5, C2×D8, C22×D5, C3×D8, C6×D4, C6×D5, D4×D5, C6×D8, D5×C2×C6, D5×D8, C3×D4×D5, C3×D5×D8

Smallest permutation representation of C3×D5×D8
On 120 points
Generators in S120
(1 104 64)(2 97 57)(3 98 58)(4 99 59)(5 100 60)(6 101 61)(7 102 62)(8 103 63)(9 83 53)(10 84 54)(11 85 55)(12 86 56)(13 87 49)(14 88 50)(15 81 51)(16 82 52)(17 89 118)(18 90 119)(19 91 120)(20 92 113)(21 93 114)(22 94 115)(23 95 116)(24 96 117)(25 44 75)(26 45 76)(27 46 77)(28 47 78)(29 48 79)(30 41 80)(31 42 73)(32 43 74)(33 108 69)(34 109 70)(35 110 71)(36 111 72)(37 112 65)(38 105 66)(39 106 67)(40 107 68)
(1 105 42 20 54)(2 106 43 21 55)(3 107 44 22 56)(4 108 45 23 49)(5 109 46 24 50)(6 110 47 17 51)(7 111 48 18 52)(8 112 41 19 53)(9 103 65 80 91)(10 104 66 73 92)(11 97 67 74 93)(12 98 68 75 94)(13 99 69 76 95)(14 100 70 77 96)(15 101 71 78 89)(16 102 72 79 90)(25 115 86 58 40)(26 116 87 59 33)(27 117 88 60 34)(28 118 81 61 35)(29 119 82 62 36)(30 120 83 63 37)(31 113 84 64 38)(32 114 85 57 39)
(1 54)(2 55)(3 56)(4 49)(5 50)(6 51)(7 52)(8 53)(9 103)(10 104)(11 97)(12 98)(13 99)(14 100)(15 101)(16 102)(17 110)(18 111)(19 112)(20 105)(21 106)(22 107)(23 108)(24 109)(33 116)(34 117)(35 118)(36 119)(37 120)(38 113)(39 114)(40 115)(57 85)(58 86)(59 87)(60 88)(61 81)(62 82)(63 83)(64 84)(65 91)(66 92)(67 93)(68 94)(69 95)(70 96)(71 89)(72 90)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)
(1 4)(2 3)(5 8)(6 7)(9 14)(10 13)(11 12)(15 16)(17 18)(19 24)(20 23)(21 22)(25 32)(26 31)(27 30)(28 29)(33 38)(34 37)(35 36)(39 40)(41 46)(42 45)(43 44)(47 48)(49 54)(50 53)(51 52)(55 56)(57 58)(59 64)(60 63)(61 62)(65 70)(66 69)(67 68)(71 72)(73 76)(74 75)(77 80)(78 79)(81 82)(83 88)(84 87)(85 86)(89 90)(91 96)(92 95)(93 94)(97 98)(99 104)(100 103)(101 102)(105 108)(106 107)(109 112)(110 111)(113 116)(114 115)(117 120)(118 119)

G:=sub<Sym(120)| (1,104,64)(2,97,57)(3,98,58)(4,99,59)(5,100,60)(6,101,61)(7,102,62)(8,103,63)(9,83,53)(10,84,54)(11,85,55)(12,86,56)(13,87,49)(14,88,50)(15,81,51)(16,82,52)(17,89,118)(18,90,119)(19,91,120)(20,92,113)(21,93,114)(22,94,115)(23,95,116)(24,96,117)(25,44,75)(26,45,76)(27,46,77)(28,47,78)(29,48,79)(30,41,80)(31,42,73)(32,43,74)(33,108,69)(34,109,70)(35,110,71)(36,111,72)(37,112,65)(38,105,66)(39,106,67)(40,107,68), (1,105,42,20,54)(2,106,43,21,55)(3,107,44,22,56)(4,108,45,23,49)(5,109,46,24,50)(6,110,47,17,51)(7,111,48,18,52)(8,112,41,19,53)(9,103,65,80,91)(10,104,66,73,92)(11,97,67,74,93)(12,98,68,75,94)(13,99,69,76,95)(14,100,70,77,96)(15,101,71,78,89)(16,102,72,79,90)(25,115,86,58,40)(26,116,87,59,33)(27,117,88,60,34)(28,118,81,61,35)(29,119,82,62,36)(30,120,83,63,37)(31,113,84,64,38)(32,114,85,57,39), (1,54)(2,55)(3,56)(4,49)(5,50)(6,51)(7,52)(8,53)(9,103)(10,104)(11,97)(12,98)(13,99)(14,100)(15,101)(16,102)(17,110)(18,111)(19,112)(20,105)(21,106)(22,107)(23,108)(24,109)(33,116)(34,117)(35,118)(36,119)(37,120)(38,113)(39,114)(40,115)(57,85)(58,86)(59,87)(60,88)(61,81)(62,82)(63,83)(64,84)(65,91)(66,92)(67,93)(68,94)(69,95)(70,96)(71,89)(72,90), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120), (1,4)(2,3)(5,8)(6,7)(9,14)(10,13)(11,12)(15,16)(17,18)(19,24)(20,23)(21,22)(25,32)(26,31)(27,30)(28,29)(33,38)(34,37)(35,36)(39,40)(41,46)(42,45)(43,44)(47,48)(49,54)(50,53)(51,52)(55,56)(57,58)(59,64)(60,63)(61,62)(65,70)(66,69)(67,68)(71,72)(73,76)(74,75)(77,80)(78,79)(81,82)(83,88)(84,87)(85,86)(89,90)(91,96)(92,95)(93,94)(97,98)(99,104)(100,103)(101,102)(105,108)(106,107)(109,112)(110,111)(113,116)(114,115)(117,120)(118,119)>;

G:=Group( (1,104,64)(2,97,57)(3,98,58)(4,99,59)(5,100,60)(6,101,61)(7,102,62)(8,103,63)(9,83,53)(10,84,54)(11,85,55)(12,86,56)(13,87,49)(14,88,50)(15,81,51)(16,82,52)(17,89,118)(18,90,119)(19,91,120)(20,92,113)(21,93,114)(22,94,115)(23,95,116)(24,96,117)(25,44,75)(26,45,76)(27,46,77)(28,47,78)(29,48,79)(30,41,80)(31,42,73)(32,43,74)(33,108,69)(34,109,70)(35,110,71)(36,111,72)(37,112,65)(38,105,66)(39,106,67)(40,107,68), (1,105,42,20,54)(2,106,43,21,55)(3,107,44,22,56)(4,108,45,23,49)(5,109,46,24,50)(6,110,47,17,51)(7,111,48,18,52)(8,112,41,19,53)(9,103,65,80,91)(10,104,66,73,92)(11,97,67,74,93)(12,98,68,75,94)(13,99,69,76,95)(14,100,70,77,96)(15,101,71,78,89)(16,102,72,79,90)(25,115,86,58,40)(26,116,87,59,33)(27,117,88,60,34)(28,118,81,61,35)(29,119,82,62,36)(30,120,83,63,37)(31,113,84,64,38)(32,114,85,57,39), (1,54)(2,55)(3,56)(4,49)(5,50)(6,51)(7,52)(8,53)(9,103)(10,104)(11,97)(12,98)(13,99)(14,100)(15,101)(16,102)(17,110)(18,111)(19,112)(20,105)(21,106)(22,107)(23,108)(24,109)(33,116)(34,117)(35,118)(36,119)(37,120)(38,113)(39,114)(40,115)(57,85)(58,86)(59,87)(60,88)(61,81)(62,82)(63,83)(64,84)(65,91)(66,92)(67,93)(68,94)(69,95)(70,96)(71,89)(72,90), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120), (1,4)(2,3)(5,8)(6,7)(9,14)(10,13)(11,12)(15,16)(17,18)(19,24)(20,23)(21,22)(25,32)(26,31)(27,30)(28,29)(33,38)(34,37)(35,36)(39,40)(41,46)(42,45)(43,44)(47,48)(49,54)(50,53)(51,52)(55,56)(57,58)(59,64)(60,63)(61,62)(65,70)(66,69)(67,68)(71,72)(73,76)(74,75)(77,80)(78,79)(81,82)(83,88)(84,87)(85,86)(89,90)(91,96)(92,95)(93,94)(97,98)(99,104)(100,103)(101,102)(105,108)(106,107)(109,112)(110,111)(113,116)(114,115)(117,120)(118,119) );

G=PermutationGroup([[(1,104,64),(2,97,57),(3,98,58),(4,99,59),(5,100,60),(6,101,61),(7,102,62),(8,103,63),(9,83,53),(10,84,54),(11,85,55),(12,86,56),(13,87,49),(14,88,50),(15,81,51),(16,82,52),(17,89,118),(18,90,119),(19,91,120),(20,92,113),(21,93,114),(22,94,115),(23,95,116),(24,96,117),(25,44,75),(26,45,76),(27,46,77),(28,47,78),(29,48,79),(30,41,80),(31,42,73),(32,43,74),(33,108,69),(34,109,70),(35,110,71),(36,111,72),(37,112,65),(38,105,66),(39,106,67),(40,107,68)], [(1,105,42,20,54),(2,106,43,21,55),(3,107,44,22,56),(4,108,45,23,49),(5,109,46,24,50),(6,110,47,17,51),(7,111,48,18,52),(8,112,41,19,53),(9,103,65,80,91),(10,104,66,73,92),(11,97,67,74,93),(12,98,68,75,94),(13,99,69,76,95),(14,100,70,77,96),(15,101,71,78,89),(16,102,72,79,90),(25,115,86,58,40),(26,116,87,59,33),(27,117,88,60,34),(28,118,81,61,35),(29,119,82,62,36),(30,120,83,63,37),(31,113,84,64,38),(32,114,85,57,39)], [(1,54),(2,55),(3,56),(4,49),(5,50),(6,51),(7,52),(8,53),(9,103),(10,104),(11,97),(12,98),(13,99),(14,100),(15,101),(16,102),(17,110),(18,111),(19,112),(20,105),(21,106),(22,107),(23,108),(24,109),(33,116),(34,117),(35,118),(36,119),(37,120),(38,113),(39,114),(40,115),(57,85),(58,86),(59,87),(60,88),(61,81),(62,82),(63,83),(64,84),(65,91),(66,92),(67,93),(68,94),(69,95),(70,96),(71,89),(72,90)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120)], [(1,4),(2,3),(5,8),(6,7),(9,14),(10,13),(11,12),(15,16),(17,18),(19,24),(20,23),(21,22),(25,32),(26,31),(27,30),(28,29),(33,38),(34,37),(35,36),(39,40),(41,46),(42,45),(43,44),(47,48),(49,54),(50,53),(51,52),(55,56),(57,58),(59,64),(60,63),(61,62),(65,70),(66,69),(67,68),(71,72),(73,76),(74,75),(77,80),(78,79),(81,82),(83,88),(84,87),(85,86),(89,90),(91,96),(92,95),(93,94),(97,98),(99,104),(100,103),(101,102),(105,108),(106,107),(109,112),(110,111),(113,116),(114,115),(117,120),(118,119)]])

84 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B4A4B5A5B6A6B6C6D6E6F6G6H6I6J6K6L6M6N8A8B8C8D10A10B10C10D10E10F12A12B12C12D15A15B15C15D20A20B24A24B24C24D24E24F24G24H30A30B30C30D30E···30L40A40B40C40D60A60B60C60D120A···120H
order122222223344556666666666666688881010101010101212121215151515202024242424242424243030303030···304040404060606060120···120
size1144552020112102211444455552020202022101022888822101022224422221010101022228···8444444444···4

84 irreducible representations

dim1111111111112222222222224444
type++++++++++++++
imageC1C2C2C2C2C2C3C6C6C6C6C6D4D4D5D8D10D10C3×D4C3×D4C3×D5C3×D8C6×D5C6×D5D4×D5D5×D8C3×D4×D5C3×D5×D8
kernelC3×D5×D8D5×C24C3×D40C3×D4⋊D5C15×D8C3×D4×D5D5×D8C8×D5D40D4⋊D5C5×D8D4×D5C3×Dic5C6×D5C3×D8C3×D5C24C3×D4Dic5D10D8D5C8D4C6C3C2C1
# reps1112122224241124242248482448

Matrix representation of C3×D5×D8 in GL4(𝔽241) generated by

15000
01500
00150
00015
,
0100
2405100
0010
0001
,
0100
1000
0010
0001
,
240000
024000
0023011
00230230
,
240000
024000
0011230
00230230
G:=sub<GL(4,GF(241))| [15,0,0,0,0,15,0,0,0,0,15,0,0,0,0,15],[0,240,0,0,1,51,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[240,0,0,0,0,240,0,0,0,0,230,230,0,0,11,230],[240,0,0,0,0,240,0,0,0,0,11,230,0,0,230,230] >;

C3×D5×D8 in GAP, Magma, Sage, TeX

C_3\times D_5\times D_8
% in TeX

G:=Group("C3xD5xD8");
// GroupNames label

G:=SmallGroup(480,703);
// by ID

G=gap.SmallGroup(480,703);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-5,303,1271,648,102,18822]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^5=c^2=d^8=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽