Extensions 1→N→G→Q→1 with N=C5xD8 and Q=C6

Direct product G=NxQ with N=C5xD8 and Q=C6
dρLabelID
D8xC30240D8xC30480,937

Semidirect products G=N:Q with N=C5xD8 and Q=C6
extensionφ:Q→Out NdρLabelID
(C5xD8):1C6 = C3xC5:D16φ: C6/C3C2 ⊆ Out C5xD82404(C5xD8):1C6480,104
(C5xD8):2C6 = C3xD5xD8φ: C6/C3C2 ⊆ Out C5xD81204(C5xD8):2C6480,703
(C5xD8):3C6 = C3xD8:3D5φ: C6/C3C2 ⊆ Out C5xD82404(C5xD8):3C6480,705
(C5xD8):4C6 = C3xD8:D5φ: C6/C3C2 ⊆ Out C5xD81204(C5xD8):4C6480,704
(C5xD8):5C6 = C15xD16φ: C6/C3C2 ⊆ Out C5xD82402(C5xD8):5C6480,214
(C5xD8):6C6 = C15xC8:C22φ: C6/C3C2 ⊆ Out C5xD81204(C5xD8):6C6480,941
(C5xD8):7C6 = C15xC4oD8φ: trivial image2402(C5xD8):7C6480,940

Non-split extensions G=N.Q with N=C5xD8 and Q=C6
extensionφ:Q→Out NdρLabelID
(C5xD8).1C6 = C3xD8.D5φ: C6/C3C2 ⊆ Out C5xD82404(C5xD8).1C6480,105
(C5xD8).2C6 = C15xSD32φ: C6/C3C2 ⊆ Out C5xD82402(C5xD8).2C6480,215

׿
x
:
Z
F
o
wr
Q
<