Extensions 1→N→G→Q→1 with N=C5×D8 and Q=C6

Direct product G=N×Q with N=C5×D8 and Q=C6
dρLabelID
D8×C30240D8xC30480,937

Semidirect products G=N:Q with N=C5×D8 and Q=C6
extensionφ:Q→Out NdρLabelID
(C5×D8)⋊1C6 = C3×C5⋊D16φ: C6/C3C2 ⊆ Out C5×D82404(C5xD8):1C6480,104
(C5×D8)⋊2C6 = C3×D5×D8φ: C6/C3C2 ⊆ Out C5×D81204(C5xD8):2C6480,703
(C5×D8)⋊3C6 = C3×D83D5φ: C6/C3C2 ⊆ Out C5×D82404(C5xD8):3C6480,705
(C5×D8)⋊4C6 = C3×D8⋊D5φ: C6/C3C2 ⊆ Out C5×D81204(C5xD8):4C6480,704
(C5×D8)⋊5C6 = C15×D16φ: C6/C3C2 ⊆ Out C5×D82402(C5xD8):5C6480,214
(C5×D8)⋊6C6 = C15×C8⋊C22φ: C6/C3C2 ⊆ Out C5×D81204(C5xD8):6C6480,941
(C5×D8)⋊7C6 = C15×C4○D8φ: trivial image2402(C5xD8):7C6480,940

Non-split extensions G=N.Q with N=C5×D8 and Q=C6
extensionφ:Q→Out NdρLabelID
(C5×D8).1C6 = C3×D8.D5φ: C6/C3C2 ⊆ Out C5×D82404(C5xD8).1C6480,105
(C5×D8).2C6 = C15×SD32φ: C6/C3C2 ⊆ Out C5×D82402(C5xD8).2C6480,215

׿
×
𝔽