Extensions 1→N→G→Q→1 with N=C10 and Q=A4⋊C4

Direct product G=N×Q with N=C10 and Q=A4⋊C4

Semidirect products G=N:Q with N=C10 and Q=A4⋊C4
extensionφ:Q→Aut NdρLabelID
C10⋊(A4⋊C4) = C2×A4⋊F5φ: A4⋊C4/A4C4 ⊆ Aut C103012+C10:(A4:C4)480,1191
C102(A4⋊C4) = C2×A4⋊Dic5φ: A4⋊C4/C2×A4C2 ⊆ Aut C10120C10:2(A4:C4)480,1033

Non-split extensions G=N.Q with N=C10 and Q=A4⋊C4
extensionφ:Q→Aut NdρLabelID
C10.1(A4⋊C4) = C5⋊U2(𝔽3)φ: A4⋊C4/A4C4 ⊆ Aut C101208+C10.1(A4:C4)480,961
C10.2(A4⋊C4) = D10.S4φ: A4⋊C4/A4C4 ⊆ Aut C10408-C10.2(A4:C4)480,962
C10.3(A4⋊C4) = Dic5.S4φ: A4⋊C4/A4C4 ⊆ Aut C1012012-C10.3(A4:C4)480,963
C10.4(A4⋊C4) = C20.S4φ: A4⋊C4/C2×A4C2 ⊆ Aut C101206C10.4(A4:C4)480,259
C10.5(A4⋊C4) = Q8⋊Dic15φ: A4⋊C4/C2×A4C2 ⊆ Aut C10160C10.5(A4:C4)480,260
C10.6(A4⋊C4) = C52U2(𝔽3)φ: A4⋊C4/C2×A4C2 ⊆ Aut C101204C10.6(A4:C4)480,261
C10.7(A4⋊C4) = C5×A4⋊C8central extension (φ=1)1203C10.7(A4:C4)480,255
C10.8(A4⋊C4) = C5×Q8⋊Dic3central extension (φ=1)160C10.8(A4:C4)480,256
C10.9(A4⋊C4) = C5×U2(𝔽3)central extension (φ=1)1202C10.9(A4:C4)480,257