Copied to
clipboard

G = C5×A4⋊C8order 480 = 25·3·5

Direct product of C5 and A4⋊C8

direct product, non-abelian, soluble, monomial

Aliases: C5×A4⋊C8, A4⋊C40, C20.10S4, (C5×A4)⋊5C8, (C2×A4).C20, C4.4(C5×S4), (A4×C20).6C2, (C4×A4).2C10, (C10×A4).5C4, C10.7(A4⋊C4), C23.(C5×Dic3), (C22×C20).1S3, (C22×C10).2Dic3, C22⋊(C5×C3⋊C8), (C2×C10)⋊2(C3⋊C8), C2.1(C5×A4⋊C4), (C22×C4).1(C5×S3), SmallGroup(480,255)

Series: Derived Chief Lower central Upper central

C1C22A4 — C5×A4⋊C8
C1C22A4C2×A4C4×A4A4×C20 — C5×A4⋊C8
A4 — C5×A4⋊C8
C1C20

Generators and relations for C5×A4⋊C8
 G = < a,b,c,d,e | a5=b2=c2=d3=e8=1, ab=ba, ac=ca, ad=da, ae=ea, dbd-1=ebe-1=bc=cb, dcd-1=b, ce=ec, ede-1=d-1 >

3C2
3C2
4C3
3C4
3C22
3C22
4C6
3C10
3C10
4C15
3C2×C4
3C2×C4
6C8
6C8
4C12
3C2×C10
3C20
3C2×C10
4C30
3C2×C8
3C2×C8
4C3⋊C8
3C2×C20
3C2×C20
6C40
6C40
4C60
3C22⋊C8
3C2×C40
3C2×C40
4C5×C3⋊C8
3C5×C22⋊C8

Smallest permutation representation of C5×A4⋊C8
On 120 points
Generators in S120
(1 94 119 78 103)(2 95 120 79 104)(3 96 113 80 97)(4 89 114 73 98)(5 90 115 74 99)(6 91 116 75 100)(7 92 117 76 101)(8 93 118 77 102)(9 34 58 83 108)(10 35 59 84 109)(11 36 60 85 110)(12 37 61 86 111)(13 38 62 87 112)(14 39 63 88 105)(15 40 64 81 106)(16 33 57 82 107)(17 42 66 27 52)(18 43 67 28 53)(19 44 68 29 54)(20 45 69 30 55)(21 46 70 31 56)(22 47 71 32 49)(23 48 72 25 50)(24 41 65 26 51)
(2 6)(4 8)(9 13)(10 14)(11 15)(12 16)(18 22)(20 24)(26 30)(28 32)(33 37)(34 38)(35 39)(36 40)(41 45)(43 47)(49 53)(51 55)(57 61)(58 62)(59 63)(60 64)(65 69)(67 71)(73 77)(75 79)(81 85)(82 86)(83 87)(84 88)(89 93)(91 95)(98 102)(100 104)(105 109)(106 110)(107 111)(108 112)(114 118)(116 120)
(1 5)(2 6)(3 7)(4 8)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)(41 45)(42 46)(43 47)(44 48)(49 53)(50 54)(51 55)(52 56)(65 69)(66 70)(67 71)(68 72)(73 77)(74 78)(75 79)(76 80)(89 93)(90 94)(91 95)(92 96)(97 101)(98 102)(99 103)(100 104)(113 117)(114 118)(115 119)(116 120)
(1 35 43)(2 44 36)(3 37 45)(4 46 38)(5 39 47)(6 48 40)(7 33 41)(8 42 34)(9 102 17)(10 18 103)(11 104 19)(12 20 97)(13 98 21)(14 22 99)(15 100 23)(16 24 101)(25 81 116)(26 117 82)(27 83 118)(28 119 84)(29 85 120)(30 113 86)(31 87 114)(32 115 88)(49 74 105)(50 106 75)(51 76 107)(52 108 77)(53 78 109)(54 110 79)(55 80 111)(56 112 73)(57 65 92)(58 93 66)(59 67 94)(60 95 68)(61 69 96)(62 89 70)(63 71 90)(64 91 72)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)

G:=sub<Sym(120)| (1,94,119,78,103)(2,95,120,79,104)(3,96,113,80,97)(4,89,114,73,98)(5,90,115,74,99)(6,91,116,75,100)(7,92,117,76,101)(8,93,118,77,102)(9,34,58,83,108)(10,35,59,84,109)(11,36,60,85,110)(12,37,61,86,111)(13,38,62,87,112)(14,39,63,88,105)(15,40,64,81,106)(16,33,57,82,107)(17,42,66,27,52)(18,43,67,28,53)(19,44,68,29,54)(20,45,69,30,55)(21,46,70,31,56)(22,47,71,32,49)(23,48,72,25,50)(24,41,65,26,51), (2,6)(4,8)(9,13)(10,14)(11,15)(12,16)(18,22)(20,24)(26,30)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(43,47)(49,53)(51,55)(57,61)(58,62)(59,63)(60,64)(65,69)(67,71)(73,77)(75,79)(81,85)(82,86)(83,87)(84,88)(89,93)(91,95)(98,102)(100,104)(105,109)(106,110)(107,111)(108,112)(114,118)(116,120), (1,5)(2,6)(3,7)(4,8)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(65,69)(66,70)(67,71)(68,72)(73,77)(74,78)(75,79)(76,80)(89,93)(90,94)(91,95)(92,96)(97,101)(98,102)(99,103)(100,104)(113,117)(114,118)(115,119)(116,120), (1,35,43)(2,44,36)(3,37,45)(4,46,38)(5,39,47)(6,48,40)(7,33,41)(8,42,34)(9,102,17)(10,18,103)(11,104,19)(12,20,97)(13,98,21)(14,22,99)(15,100,23)(16,24,101)(25,81,116)(26,117,82)(27,83,118)(28,119,84)(29,85,120)(30,113,86)(31,87,114)(32,115,88)(49,74,105)(50,106,75)(51,76,107)(52,108,77)(53,78,109)(54,110,79)(55,80,111)(56,112,73)(57,65,92)(58,93,66)(59,67,94)(60,95,68)(61,69,96)(62,89,70)(63,71,90)(64,91,72), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)>;

G:=Group( (1,94,119,78,103)(2,95,120,79,104)(3,96,113,80,97)(4,89,114,73,98)(5,90,115,74,99)(6,91,116,75,100)(7,92,117,76,101)(8,93,118,77,102)(9,34,58,83,108)(10,35,59,84,109)(11,36,60,85,110)(12,37,61,86,111)(13,38,62,87,112)(14,39,63,88,105)(15,40,64,81,106)(16,33,57,82,107)(17,42,66,27,52)(18,43,67,28,53)(19,44,68,29,54)(20,45,69,30,55)(21,46,70,31,56)(22,47,71,32,49)(23,48,72,25,50)(24,41,65,26,51), (2,6)(4,8)(9,13)(10,14)(11,15)(12,16)(18,22)(20,24)(26,30)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(43,47)(49,53)(51,55)(57,61)(58,62)(59,63)(60,64)(65,69)(67,71)(73,77)(75,79)(81,85)(82,86)(83,87)(84,88)(89,93)(91,95)(98,102)(100,104)(105,109)(106,110)(107,111)(108,112)(114,118)(116,120), (1,5)(2,6)(3,7)(4,8)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(65,69)(66,70)(67,71)(68,72)(73,77)(74,78)(75,79)(76,80)(89,93)(90,94)(91,95)(92,96)(97,101)(98,102)(99,103)(100,104)(113,117)(114,118)(115,119)(116,120), (1,35,43)(2,44,36)(3,37,45)(4,46,38)(5,39,47)(6,48,40)(7,33,41)(8,42,34)(9,102,17)(10,18,103)(11,104,19)(12,20,97)(13,98,21)(14,22,99)(15,100,23)(16,24,101)(25,81,116)(26,117,82)(27,83,118)(28,119,84)(29,85,120)(30,113,86)(31,87,114)(32,115,88)(49,74,105)(50,106,75)(51,76,107)(52,108,77)(53,78,109)(54,110,79)(55,80,111)(56,112,73)(57,65,92)(58,93,66)(59,67,94)(60,95,68)(61,69,96)(62,89,70)(63,71,90)(64,91,72), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120) );

G=PermutationGroup([[(1,94,119,78,103),(2,95,120,79,104),(3,96,113,80,97),(4,89,114,73,98),(5,90,115,74,99),(6,91,116,75,100),(7,92,117,76,101),(8,93,118,77,102),(9,34,58,83,108),(10,35,59,84,109),(11,36,60,85,110),(12,37,61,86,111),(13,38,62,87,112),(14,39,63,88,105),(15,40,64,81,106),(16,33,57,82,107),(17,42,66,27,52),(18,43,67,28,53),(19,44,68,29,54),(20,45,69,30,55),(21,46,70,31,56),(22,47,71,32,49),(23,48,72,25,50),(24,41,65,26,51)], [(2,6),(4,8),(9,13),(10,14),(11,15),(12,16),(18,22),(20,24),(26,30),(28,32),(33,37),(34,38),(35,39),(36,40),(41,45),(43,47),(49,53),(51,55),(57,61),(58,62),(59,63),(60,64),(65,69),(67,71),(73,77),(75,79),(81,85),(82,86),(83,87),(84,88),(89,93),(91,95),(98,102),(100,104),(105,109),(106,110),(107,111),(108,112),(114,118),(116,120)], [(1,5),(2,6),(3,7),(4,8),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32),(41,45),(42,46),(43,47),(44,48),(49,53),(50,54),(51,55),(52,56),(65,69),(66,70),(67,71),(68,72),(73,77),(74,78),(75,79),(76,80),(89,93),(90,94),(91,95),(92,96),(97,101),(98,102),(99,103),(100,104),(113,117),(114,118),(115,119),(116,120)], [(1,35,43),(2,44,36),(3,37,45),(4,46,38),(5,39,47),(6,48,40),(7,33,41),(8,42,34),(9,102,17),(10,18,103),(11,104,19),(12,20,97),(13,98,21),(14,22,99),(15,100,23),(16,24,101),(25,81,116),(26,117,82),(27,83,118),(28,119,84),(29,85,120),(30,113,86),(31,87,114),(32,115,88),(49,74,105),(50,106,75),(51,76,107),(52,108,77),(53,78,109),(54,110,79),(55,80,111),(56,112,73),(57,65,92),(58,93,66),(59,67,94),(60,95,68),(61,69,96),(62,89,70),(63,71,90),(64,91,72)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120)]])

100 conjugacy classes

class 1 2A2B2C 3 4A4B4C4D5A5B5C5D 6 8A···8H10A10B10C10D10E···10L12A12B15A15B15C15D20A···20H20I···20P30A30B30C30D40A···40AF60A···60H
order122234444555568···81010101010···1012121515151520···2020···203030303040···4060···60
size113381133111186···611113···38888881···13···388886···68···8

100 irreducible representations

dim11111111222222333333
type+++-+
imageC1C2C4C5C8C10C20C40S3Dic3C3⋊C8C5×S3C5×Dic3C5×C3⋊C8S4A4⋊C4A4⋊C8C5×S4C5×A4⋊C4C5×A4⋊C8
kernelC5×A4⋊C8A4×C20C10×A4A4⋊C8C5×A4C4×A4C2×A4A4C22×C20C22×C10C2×C10C22×C4C23C22C20C10C5C4C2C1
# reps1124448161124482248816

Matrix representation of C5×A4⋊C8 in GL3(𝔽241) generated by

8700
0870
0087
,
100
12400
10240
,
24000
24010
00240
,
10239
00240
01240
,
80225
08233
00233
G:=sub<GL(3,GF(241))| [87,0,0,0,87,0,0,0,87],[1,1,1,0,240,0,0,0,240],[240,240,0,0,1,0,0,0,240],[1,0,0,0,0,1,239,240,240],[8,0,0,0,8,0,225,233,233] >;

C5×A4⋊C8 in GAP, Magma, Sage, TeX

C_5\times A_4\rtimes C_8
% in TeX

G:=Group("C5xA4:C8");
// GroupNames label

G:=SmallGroup(480,255);
// by ID

G=gap.SmallGroup(480,255);
# by ID

G:=PCGroup([7,-2,-5,-2,-2,-3,-2,2,70,58,2804,10085,285,5886,475]);
// Polycyclic

G:=Group<a,b,c,d,e|a^5=b^2=c^2=d^3=e^8=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,d*b*d^-1=e*b*e^-1=b*c=c*b,d*c*d^-1=b,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

Export

Subgroup lattice of C5×A4⋊C8 in TeX

׿
×
𝔽