Copied to
clipboard

G = Dic5.S4order 480 = 25·3·5

5th non-split extension by Dic5 of S4 acting via S4/A4=C2

non-abelian, soluble, monomial

Aliases: Dic5.5S4, C5⋊(A4⋊C8), A4⋊(C5⋊C8), (C2×A4).F5, (C5×A4)⋊1C8, C23.(C3⋊F5), (C10×A4).1C4, C22⋊(C15⋊C8), C2.1(A4⋊F5), C10.3(A4⋊C4), (A4×Dic5).3C2, (C22×C10).Dic3, (C22×Dic5).2S3, (C2×C10)⋊(C3⋊C8), SmallGroup(480,963)

Series: Derived Chief Lower central Upper central

C1C22C5×A4 — Dic5.S4
C1C22C2×C10C5×A4C10×A4A4×Dic5 — Dic5.S4
C5×A4 — Dic5.S4
C1C2

Generators and relations for Dic5.S4
 G = < a,b,c,d,e,f | a10=c2=d2=e3=1, b2=a5, f2=b, bab-1=a-1, ac=ca, ad=da, ae=ea, faf-1=a7, bc=cb, bd=db, be=eb, bf=fb, ece-1=fcf-1=cd=dc, ede-1=c, df=fd, fef-1=e-1 >

3C2
3C2
4C3
3C22
3C22
5C4
15C4
4C6
3C10
3C10
4C15
15C2×C4
15C2×C4
30C8
30C8
20C12
3C2×C10
3C2×C10
3Dic5
4C30
5C22×C4
15C2×C8
15C2×C8
20C3⋊C8
3C2×Dic5
3C2×Dic5
6C5⋊C8
6C5⋊C8
4C3×Dic5
15C22⋊C8
5C4×A4
3C2×C5⋊C8
3C2×C5⋊C8
4C15⋊C8
5A4⋊C8
3C23.2F5

Character table of Dic5.S4

 class 12A2B2C34A4B4C4D568A8B8C8D8E8F8G8H10A10B10C12A12B15A15B30A30B
 size 1133855151548303030303030303041212404016161616
ρ11111111111111111111111111111    trivial
ρ211111111111-1-1-1-1-1-1-1-1111111111    linear of order 2
ρ311111-1-1-1-111i-i-i-i-iiii111-1-11111    linear of order 4
ρ411111-1-1-1-111-iiiii-i-i-i111-1-11111    linear of order 4
ρ51-11-11-iii-i1-1ζ8ζ87ζ87ζ83ζ83ζ85ζ85ζ8-11-1-ii11-1-1    linear of order 8
ρ61-11-11i-i-ii1-1ζ87ζ8ζ8ζ85ζ85ζ83ζ83ζ87-11-1i-i11-1-1    linear of order 8
ρ71-11-11i-i-ii1-1ζ83ζ85ζ85ζ8ζ8ζ87ζ87ζ83-11-1i-i11-1-1    linear of order 8
ρ81-11-11-iii-i1-1ζ85ζ83ζ83ζ87ζ87ζ8ζ8ζ85-11-1-ii11-1-1    linear of order 8
ρ92222-122222-100000000222-1-1-1-1-1-1    orthogonal lifted from S3
ρ102222-1-2-2-2-22-10000000022211-1-1-1-1    symplectic lifted from Dic3, Schur index 2
ρ112-22-2-1-2i2i2i-2i2100000000-22-2i-i-1-111    complex lifted from C3⋊C8
ρ122-22-2-12i-2i-2i2i2100000000-22-2-ii-1-111    complex lifted from C3⋊C8
ρ1333-1-1033-1-130-11-11-11-113-1-1000000    orthogonal lifted from S4
ρ1433-1-1033-1-1301-11-11-11-13-1-1000000    orthogonal lifted from S4
ρ1533-1-10-3-31130-i-ii-iii-ii3-1-1000000    complex lifted from A4⋊C4
ρ1633-1-10-3-31130ii-ii-i-ii-i3-1-1000000    complex lifted from A4⋊C4
ρ173-3-1103i-3ii-i30ζ83ζ8ζ85ζ85ζ8ζ83ζ87ζ87-3-11000000    complex lifted from A4⋊C8
ρ183-3-110-3i3i-ii30ζ85ζ87ζ83ζ83ζ87ζ85ζ8ζ8-3-11000000    complex lifted from A4⋊C8
ρ193-3-1103i-3ii-i30ζ87ζ85ζ8ζ8ζ85ζ87ζ83ζ83-3-11000000    complex lifted from A4⋊C8
ρ203-3-110-3i3i-ii30ζ8ζ83ζ87ζ87ζ83ζ8ζ85ζ85-3-11000000    complex lifted from A4⋊C8
ρ21444440000-1400000000-1-1-100-1-1-1-1    orthogonal lifted from F5
ρ224-44-440000-1-4000000001-1100-1-111    symplectic lifted from C5⋊C8, Schur index 2
ρ234-44-4-20000-12000000001-11001--15/21+-15/2-1+-15/2-1--15/2    complex lifted from C15⋊C8
ρ244-44-4-20000-12000000001-11001+-15/21--15/2-1--15/2-1+-15/2    complex lifted from C15⋊C8
ρ254444-20000-1-200000000-1-1-1001+-15/21--15/21+-15/21--15/2    complex lifted from C3⋊F5
ρ264444-20000-1-200000000-1-1-1001--15/21+-15/21--15/21+-15/2    complex lifted from C3⋊F5
ρ271212-4-400000-3000000000-311000000    orthogonal lifted from A4⋊F5
ρ2812-12-4400000-300000000031-1000000    symplectic faithful, Schur index 2

Smallest permutation representation of Dic5.S4
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)
(1 36 6 31)(2 35 7 40)(3 34 8 39)(4 33 9 38)(5 32 10 37)(11 44 16 49)(12 43 17 48)(13 42 18 47)(14 41 19 46)(15 50 20 45)(21 54 26 59)(22 53 27 58)(23 52 28 57)(24 51 29 56)(25 60 30 55)(61 94 66 99)(62 93 67 98)(63 92 68 97)(64 91 69 96)(65 100 70 95)(71 104 76 109)(72 103 77 108)(73 102 78 107)(74 101 79 106)(75 110 80 105)(81 114 86 119)(82 113 87 118)(83 112 88 117)(84 111 89 116)(85 120 90 115)
(11 16)(12 17)(13 18)(14 19)(15 20)(21 26)(22 27)(23 28)(24 29)(25 30)(41 46)(42 47)(43 48)(44 49)(45 50)(51 56)(52 57)(53 58)(54 59)(55 60)(61 66)(62 67)(63 68)(64 69)(65 70)(71 76)(72 77)(73 78)(74 79)(75 80)(91 96)(92 97)(93 98)(94 99)(95 100)(101 106)(102 107)(103 108)(104 109)(105 110)
(1 6)(2 7)(3 8)(4 9)(5 10)(21 26)(22 27)(23 28)(24 29)(25 30)(31 36)(32 37)(33 38)(34 39)(35 40)(51 56)(52 57)(53 58)(54 59)(55 60)(61 66)(62 67)(63 68)(64 69)(65 70)(81 86)(82 87)(83 88)(84 89)(85 90)(91 96)(92 97)(93 98)(94 99)(95 100)(111 116)(112 117)(113 118)(114 119)(115 120)
(1 19 29)(2 20 30)(3 11 21)(4 12 22)(5 13 23)(6 14 24)(7 15 25)(8 16 26)(9 17 27)(10 18 28)(31 41 51)(32 42 52)(33 43 53)(34 44 54)(35 45 55)(36 46 56)(37 47 57)(38 48 58)(39 49 59)(40 50 60)(61 81 71)(62 82 72)(63 83 73)(64 84 74)(65 85 75)(66 86 76)(67 87 77)(68 88 78)(69 89 79)(70 90 80)(91 111 101)(92 112 102)(93 113 103)(94 114 104)(95 115 105)(96 116 106)(97 117 107)(98 118 108)(99 119 109)(100 120 110)
(1 92 36 68 6 97 31 63)(2 95 35 65 7 100 40 70)(3 98 34 62 8 93 39 67)(4 91 33 69 9 96 38 64)(5 94 32 66 10 99 37 61)(11 108 44 72 16 103 49 77)(12 101 43 79 17 106 48 74)(13 104 42 76 18 109 47 71)(14 107 41 73 19 102 46 78)(15 110 50 80 20 105 45 75)(21 118 54 82 26 113 59 87)(22 111 53 89 27 116 58 84)(23 114 52 86 28 119 57 81)(24 117 51 83 29 112 56 88)(25 120 60 90 30 115 55 85)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120), (1,36,6,31)(2,35,7,40)(3,34,8,39)(4,33,9,38)(5,32,10,37)(11,44,16,49)(12,43,17,48)(13,42,18,47)(14,41,19,46)(15,50,20,45)(21,54,26,59)(22,53,27,58)(23,52,28,57)(24,51,29,56)(25,60,30,55)(61,94,66,99)(62,93,67,98)(63,92,68,97)(64,91,69,96)(65,100,70,95)(71,104,76,109)(72,103,77,108)(73,102,78,107)(74,101,79,106)(75,110,80,105)(81,114,86,119)(82,113,87,118)(83,112,88,117)(84,111,89,116)(85,120,90,115), (11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30)(41,46)(42,47)(43,48)(44,49)(45,50)(51,56)(52,57)(53,58)(54,59)(55,60)(61,66)(62,67)(63,68)(64,69)(65,70)(71,76)(72,77)(73,78)(74,79)(75,80)(91,96)(92,97)(93,98)(94,99)(95,100)(101,106)(102,107)(103,108)(104,109)(105,110), (1,6)(2,7)(3,8)(4,9)(5,10)(21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40)(51,56)(52,57)(53,58)(54,59)(55,60)(61,66)(62,67)(63,68)(64,69)(65,70)(81,86)(82,87)(83,88)(84,89)(85,90)(91,96)(92,97)(93,98)(94,99)(95,100)(111,116)(112,117)(113,118)(114,119)(115,120), (1,19,29)(2,20,30)(3,11,21)(4,12,22)(5,13,23)(6,14,24)(7,15,25)(8,16,26)(9,17,27)(10,18,28)(31,41,51)(32,42,52)(33,43,53)(34,44,54)(35,45,55)(36,46,56)(37,47,57)(38,48,58)(39,49,59)(40,50,60)(61,81,71)(62,82,72)(63,83,73)(64,84,74)(65,85,75)(66,86,76)(67,87,77)(68,88,78)(69,89,79)(70,90,80)(91,111,101)(92,112,102)(93,113,103)(94,114,104)(95,115,105)(96,116,106)(97,117,107)(98,118,108)(99,119,109)(100,120,110), (1,92,36,68,6,97,31,63)(2,95,35,65,7,100,40,70)(3,98,34,62,8,93,39,67)(4,91,33,69,9,96,38,64)(5,94,32,66,10,99,37,61)(11,108,44,72,16,103,49,77)(12,101,43,79,17,106,48,74)(13,104,42,76,18,109,47,71)(14,107,41,73,19,102,46,78)(15,110,50,80,20,105,45,75)(21,118,54,82,26,113,59,87)(22,111,53,89,27,116,58,84)(23,114,52,86,28,119,57,81)(24,117,51,83,29,112,56,88)(25,120,60,90,30,115,55,85)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120), (1,36,6,31)(2,35,7,40)(3,34,8,39)(4,33,9,38)(5,32,10,37)(11,44,16,49)(12,43,17,48)(13,42,18,47)(14,41,19,46)(15,50,20,45)(21,54,26,59)(22,53,27,58)(23,52,28,57)(24,51,29,56)(25,60,30,55)(61,94,66,99)(62,93,67,98)(63,92,68,97)(64,91,69,96)(65,100,70,95)(71,104,76,109)(72,103,77,108)(73,102,78,107)(74,101,79,106)(75,110,80,105)(81,114,86,119)(82,113,87,118)(83,112,88,117)(84,111,89,116)(85,120,90,115), (11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30)(41,46)(42,47)(43,48)(44,49)(45,50)(51,56)(52,57)(53,58)(54,59)(55,60)(61,66)(62,67)(63,68)(64,69)(65,70)(71,76)(72,77)(73,78)(74,79)(75,80)(91,96)(92,97)(93,98)(94,99)(95,100)(101,106)(102,107)(103,108)(104,109)(105,110), (1,6)(2,7)(3,8)(4,9)(5,10)(21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40)(51,56)(52,57)(53,58)(54,59)(55,60)(61,66)(62,67)(63,68)(64,69)(65,70)(81,86)(82,87)(83,88)(84,89)(85,90)(91,96)(92,97)(93,98)(94,99)(95,100)(111,116)(112,117)(113,118)(114,119)(115,120), (1,19,29)(2,20,30)(3,11,21)(4,12,22)(5,13,23)(6,14,24)(7,15,25)(8,16,26)(9,17,27)(10,18,28)(31,41,51)(32,42,52)(33,43,53)(34,44,54)(35,45,55)(36,46,56)(37,47,57)(38,48,58)(39,49,59)(40,50,60)(61,81,71)(62,82,72)(63,83,73)(64,84,74)(65,85,75)(66,86,76)(67,87,77)(68,88,78)(69,89,79)(70,90,80)(91,111,101)(92,112,102)(93,113,103)(94,114,104)(95,115,105)(96,116,106)(97,117,107)(98,118,108)(99,119,109)(100,120,110), (1,92,36,68,6,97,31,63)(2,95,35,65,7,100,40,70)(3,98,34,62,8,93,39,67)(4,91,33,69,9,96,38,64)(5,94,32,66,10,99,37,61)(11,108,44,72,16,103,49,77)(12,101,43,79,17,106,48,74)(13,104,42,76,18,109,47,71)(14,107,41,73,19,102,46,78)(15,110,50,80,20,105,45,75)(21,118,54,82,26,113,59,87)(22,111,53,89,27,116,58,84)(23,114,52,86,28,119,57,81)(24,117,51,83,29,112,56,88)(25,120,60,90,30,115,55,85) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120)], [(1,36,6,31),(2,35,7,40),(3,34,8,39),(4,33,9,38),(5,32,10,37),(11,44,16,49),(12,43,17,48),(13,42,18,47),(14,41,19,46),(15,50,20,45),(21,54,26,59),(22,53,27,58),(23,52,28,57),(24,51,29,56),(25,60,30,55),(61,94,66,99),(62,93,67,98),(63,92,68,97),(64,91,69,96),(65,100,70,95),(71,104,76,109),(72,103,77,108),(73,102,78,107),(74,101,79,106),(75,110,80,105),(81,114,86,119),(82,113,87,118),(83,112,88,117),(84,111,89,116),(85,120,90,115)], [(11,16),(12,17),(13,18),(14,19),(15,20),(21,26),(22,27),(23,28),(24,29),(25,30),(41,46),(42,47),(43,48),(44,49),(45,50),(51,56),(52,57),(53,58),(54,59),(55,60),(61,66),(62,67),(63,68),(64,69),(65,70),(71,76),(72,77),(73,78),(74,79),(75,80),(91,96),(92,97),(93,98),(94,99),(95,100),(101,106),(102,107),(103,108),(104,109),(105,110)], [(1,6),(2,7),(3,8),(4,9),(5,10),(21,26),(22,27),(23,28),(24,29),(25,30),(31,36),(32,37),(33,38),(34,39),(35,40),(51,56),(52,57),(53,58),(54,59),(55,60),(61,66),(62,67),(63,68),(64,69),(65,70),(81,86),(82,87),(83,88),(84,89),(85,90),(91,96),(92,97),(93,98),(94,99),(95,100),(111,116),(112,117),(113,118),(114,119),(115,120)], [(1,19,29),(2,20,30),(3,11,21),(4,12,22),(5,13,23),(6,14,24),(7,15,25),(8,16,26),(9,17,27),(10,18,28),(31,41,51),(32,42,52),(33,43,53),(34,44,54),(35,45,55),(36,46,56),(37,47,57),(38,48,58),(39,49,59),(40,50,60),(61,81,71),(62,82,72),(63,83,73),(64,84,74),(65,85,75),(66,86,76),(67,87,77),(68,88,78),(69,89,79),(70,90,80),(91,111,101),(92,112,102),(93,113,103),(94,114,104),(95,115,105),(96,116,106),(97,117,107),(98,118,108),(99,119,109),(100,120,110)], [(1,92,36,68,6,97,31,63),(2,95,35,65,7,100,40,70),(3,98,34,62,8,93,39,67),(4,91,33,69,9,96,38,64),(5,94,32,66,10,99,37,61),(11,108,44,72,16,103,49,77),(12,101,43,79,17,106,48,74),(13,104,42,76,18,109,47,71),(14,107,41,73,19,102,46,78),(15,110,50,80,20,105,45,75),(21,118,54,82,26,113,59,87),(22,111,53,89,27,116,58,84),(23,114,52,86,28,119,57,81),(24,117,51,83,29,112,56,88),(25,120,60,90,30,115,55,85)]])

Matrix representation of Dic5.S4 in GL7(𝔽241)

240000000
024000000
002400000
0000100
0000010
0000001
000240240240240
,
177000000
017700000
001770000
000171173141121
000221119170
00020918968239
0002211003032
,
240000000
024000000
91010000
0001000
0000100
0000010
0000001
,
240000000
151100000
002400000
0001000
0000100
0000010
0000001
,
9023900000
11915110000
1229100000
0001140229229
00012126120
00001212612
0002292290114
,
790600000
85211490000
15601620000
0001038618727
0008154157140
00022484165138
0002147659160

G:=sub<GL(7,GF(241))| [240,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,0,0,240,0,0,0,1,0,0,240,0,0,0,0,1,0,240,0,0,0,0,0,1,240],[177,0,0,0,0,0,0,0,177,0,0,0,0,0,0,0,177,0,0,0,0,0,0,0,171,2,209,221,0,0,0,173,211,189,100,0,0,0,141,191,68,30,0,0,0,121,70,239,32],[240,0,91,0,0,0,0,0,240,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[240,151,0,0,0,0,0,0,1,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[90,119,122,0,0,0,0,239,151,91,0,0,0,0,0,1,0,0,0,0,0,0,0,0,114,12,0,229,0,0,0,0,126,12,229,0,0,0,229,12,126,0,0,0,0,229,0,12,114],[79,85,156,0,0,0,0,0,211,0,0,0,0,0,60,49,162,0,0,0,0,0,0,0,103,81,224,214,0,0,0,86,54,84,76,0,0,0,187,157,165,59,0,0,0,27,140,138,160] >;

Dic5.S4 in GAP, Magma, Sage, TeX

{\rm Dic}_5.S_4
% in TeX

G:=Group("Dic5.S4");
// GroupNames label

G:=SmallGroup(480,963);
// by ID

G=gap.SmallGroup(480,963);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-5,-2,2,14,36,451,2524,1691,10085,1286,5886,2232]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^10=c^2=d^2=e^3=1,b^2=a^5,f^2=b,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,f*a*f^-1=a^7,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,e*c*e^-1=f*c*f^-1=c*d=d*c,e*d*e^-1=c,d*f=f*d,f*e*f^-1=e^-1>;
// generators/relations

Export

Subgroup lattice of Dic5.S4 in TeX
Character table of Dic5.S4 in TeX

׿
×
𝔽