Copied to
clipboard

G = C20.S4order 480 = 25·3·5

4th non-split extension by C20 of S4 acting via S4/A4=C2

non-abelian, soluble, monomial

Aliases: C20.4S4, C23.Dic15, A4⋊(C52C8), C52(A4⋊C8), (C5×A4)⋊3C8, C4.4(C5⋊S4), (C4×A4).2D5, (C2×A4).Dic5, (C10×A4).3C4, (A4×C20).2C2, C22⋊(C153C8), C10.4(A4⋊C4), (C22×C20).3S3, (C22×C4).1D15, C2.1(A4⋊Dic5), (C22×C10).3Dic3, (C2×C10)⋊3(C3⋊C8), SmallGroup(480,259)

Series: Derived Chief Lower central Upper central

C1C22C5×A4 — C20.S4
C1C22C2×C10C5×A4C10×A4A4×C20 — C20.S4
C5×A4 — C20.S4
C1C4

Generators and relations for C20.S4
 G = < a,b,c,d,e | a20=b2=c2=d3=1, e2=a5, ab=ba, ac=ca, ad=da, eae-1=a9, dbd-1=ebe-1=bc=cb, dcd-1=b, ce=ec, ede-1=d-1 >

3C2
3C2
4C3
3C4
3C22
3C22
4C6
3C10
3C10
4C15
3C2×C4
3C2×C4
30C8
30C8
4C12
3C2×C10
3C2×C10
3C20
4C30
15C2×C8
15C2×C8
20C3⋊C8
3C2×C20
3C2×C20
6C52C8
6C52C8
4C60
15C22⋊C8
3C2×C52C8
3C2×C52C8
4C153C8
5A4⋊C8
3C20.55D4

Smallest permutation representation of C20.S4
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)(41 51)(42 52)(43 53)(44 54)(45 55)(46 56)(47 57)(48 58)(49 59)(50 60)(61 71)(62 72)(63 73)(64 74)(65 75)(66 76)(67 77)(68 78)(69 79)(70 80)(101 111)(102 112)(103 113)(104 114)(105 115)(106 116)(107 117)(108 118)(109 119)(110 120)
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 17)(8 18)(9 19)(10 20)(61 71)(62 72)(63 73)(64 74)(65 75)(66 76)(67 77)(68 78)(69 79)(70 80)(81 91)(82 92)(83 93)(84 94)(85 95)(86 96)(87 97)(88 98)(89 99)(90 100)(101 111)(102 112)(103 113)(104 114)(105 115)(106 116)(107 117)(108 118)(109 119)(110 120)
(1 42 78)(2 43 79)(3 44 80)(4 45 61)(5 46 62)(6 47 63)(7 48 64)(8 49 65)(9 50 66)(10 51 67)(11 52 68)(12 53 69)(13 54 70)(14 55 71)(15 56 72)(16 57 73)(17 58 74)(18 59 75)(19 60 76)(20 41 77)(21 119 82)(22 120 83)(23 101 84)(24 102 85)(25 103 86)(26 104 87)(27 105 88)(28 106 89)(29 107 90)(30 108 91)(31 109 92)(32 110 93)(33 111 94)(34 112 95)(35 113 96)(36 114 97)(37 115 98)(38 116 99)(39 117 100)(40 118 81)
(1 113 6 118 11 103 16 108)(2 102 7 107 12 112 17 117)(3 111 8 116 13 101 18 106)(4 120 9 105 14 110 19 115)(5 109 10 114 15 119 20 104)(21 41 26 46 31 51 36 56)(22 50 27 55 32 60 37 45)(23 59 28 44 33 49 38 54)(24 48 29 53 34 58 39 43)(25 57 30 42 35 47 40 52)(61 83 66 88 71 93 76 98)(62 92 67 97 72 82 77 87)(63 81 68 86 73 91 78 96)(64 90 69 95 74 100 79 85)(65 99 70 84 75 89 80 94)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120), (1,42,78)(2,43,79)(3,44,80)(4,45,61)(5,46,62)(6,47,63)(7,48,64)(8,49,65)(9,50,66)(10,51,67)(11,52,68)(12,53,69)(13,54,70)(14,55,71)(15,56,72)(16,57,73)(17,58,74)(18,59,75)(19,60,76)(20,41,77)(21,119,82)(22,120,83)(23,101,84)(24,102,85)(25,103,86)(26,104,87)(27,105,88)(28,106,89)(29,107,90)(30,108,91)(31,109,92)(32,110,93)(33,111,94)(34,112,95)(35,113,96)(36,114,97)(37,115,98)(38,116,99)(39,117,100)(40,118,81), (1,113,6,118,11,103,16,108)(2,102,7,107,12,112,17,117)(3,111,8,116,13,101,18,106)(4,120,9,105,14,110,19,115)(5,109,10,114,15,119,20,104)(21,41,26,46,31,51,36,56)(22,50,27,55,32,60,37,45)(23,59,28,44,33,49,38,54)(24,48,29,53,34,58,39,43)(25,57,30,42,35,47,40,52)(61,83,66,88,71,93,76,98)(62,92,67,97,72,82,77,87)(63,81,68,86,73,91,78,96)(64,90,69,95,74,100,79,85)(65,99,70,84,75,89,80,94)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120), (1,42,78)(2,43,79)(3,44,80)(4,45,61)(5,46,62)(6,47,63)(7,48,64)(8,49,65)(9,50,66)(10,51,67)(11,52,68)(12,53,69)(13,54,70)(14,55,71)(15,56,72)(16,57,73)(17,58,74)(18,59,75)(19,60,76)(20,41,77)(21,119,82)(22,120,83)(23,101,84)(24,102,85)(25,103,86)(26,104,87)(27,105,88)(28,106,89)(29,107,90)(30,108,91)(31,109,92)(32,110,93)(33,111,94)(34,112,95)(35,113,96)(36,114,97)(37,115,98)(38,116,99)(39,117,100)(40,118,81), (1,113,6,118,11,103,16,108)(2,102,7,107,12,112,17,117)(3,111,8,116,13,101,18,106)(4,120,9,105,14,110,19,115)(5,109,10,114,15,119,20,104)(21,41,26,46,31,51,36,56)(22,50,27,55,32,60,37,45)(23,59,28,44,33,49,38,54)(24,48,29,53,34,58,39,43)(25,57,30,42,35,47,40,52)(61,83,66,88,71,93,76,98)(62,92,67,97,72,82,77,87)(63,81,68,86,73,91,78,96)(64,90,69,95,74,100,79,85)(65,99,70,84,75,89,80,94) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40),(41,51),(42,52),(43,53),(44,54),(45,55),(46,56),(47,57),(48,58),(49,59),(50,60),(61,71),(62,72),(63,73),(64,74),(65,75),(66,76),(67,77),(68,78),(69,79),(70,80),(101,111),(102,112),(103,113),(104,114),(105,115),(106,116),(107,117),(108,118),(109,119),(110,120)], [(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,17),(8,18),(9,19),(10,20),(61,71),(62,72),(63,73),(64,74),(65,75),(66,76),(67,77),(68,78),(69,79),(70,80),(81,91),(82,92),(83,93),(84,94),(85,95),(86,96),(87,97),(88,98),(89,99),(90,100),(101,111),(102,112),(103,113),(104,114),(105,115),(106,116),(107,117),(108,118),(109,119),(110,120)], [(1,42,78),(2,43,79),(3,44,80),(4,45,61),(5,46,62),(6,47,63),(7,48,64),(8,49,65),(9,50,66),(10,51,67),(11,52,68),(12,53,69),(13,54,70),(14,55,71),(15,56,72),(16,57,73),(17,58,74),(18,59,75),(19,60,76),(20,41,77),(21,119,82),(22,120,83),(23,101,84),(24,102,85),(25,103,86),(26,104,87),(27,105,88),(28,106,89),(29,107,90),(30,108,91),(31,109,92),(32,110,93),(33,111,94),(34,112,95),(35,113,96),(36,114,97),(37,115,98),(38,116,99),(39,117,100),(40,118,81)], [(1,113,6,118,11,103,16,108),(2,102,7,107,12,112,17,117),(3,111,8,116,13,101,18,106),(4,120,9,105,14,110,19,115),(5,109,10,114,15,119,20,104),(21,41,26,46,31,51,36,56),(22,50,27,55,32,60,37,45),(23,59,28,44,33,49,38,54),(24,48,29,53,34,58,39,43),(25,57,30,42,35,47,40,52),(61,83,66,88,71,93,76,98),(62,92,67,97,72,82,77,87),(63,81,68,86,73,91,78,96),(64,90,69,95,74,100,79,85),(65,99,70,84,75,89,80,94)]])

52 conjugacy classes

class 1 2A2B2C 3 4A4B4C4D5A5B 6 8A···8H10A10B10C10D10E10F12A12B15A15B15C15D20A20B20C20D20E20F20G20H30A30B30C30D60A···60H
order1222344445568···810101010101012121515151520202020202020203030303060···60
size11338113322830···302266668888882222666688888···8

52 irreducible representations

dim1111222222222333666
type++++--+-++-
imageC1C2C4C8S3D5Dic3Dic5C3⋊C8D15C52C8Dic15C153C8S4A4⋊C4A4⋊C8C5⋊S4A4⋊Dic5C20.S4
kernelC20.S4A4×C20C10×A4C5×A4C22×C20C4×A4C22×C10C2×A4C2×C10C22×C4A4C23C22C20C10C5C4C2C1
# reps1124121224448224224

Matrix representation of C20.S4 in GL5(𝔽241)

13164000
6764000
006400
000640
000064
,
10000
01000
00100
002312400
0090240
,
10000
01000
0024000
001010
0000240
,
93211000
187147000
0090239
0075010
001661232
,
11276000
240129000
00720225
00162880
00790169

G:=sub<GL(5,GF(241))| [131,67,0,0,0,64,64,0,0,0,0,0,64,0,0,0,0,0,64,0,0,0,0,0,64],[1,0,0,0,0,0,1,0,0,0,0,0,1,231,9,0,0,0,240,0,0,0,0,0,240],[1,0,0,0,0,0,1,0,0,0,0,0,240,10,0,0,0,0,1,0,0,0,0,0,240],[93,187,0,0,0,211,147,0,0,0,0,0,9,75,166,0,0,0,0,1,0,0,239,10,232],[112,240,0,0,0,76,129,0,0,0,0,0,72,162,79,0,0,0,8,0,0,0,225,80,169] >;

C20.S4 in GAP, Magma, Sage, TeX

C_{20}.S_4
% in TeX

G:=Group("C20.S4");
// GroupNames label

G:=SmallGroup(480,259);
// by ID

G=gap.SmallGroup(480,259);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-5,-2,2,14,36,451,3364,10085,1286,5886,2232]);
// Polycyclic

G:=Group<a,b,c,d,e|a^20=b^2=c^2=d^3=1,e^2=a^5,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a^9,d*b*d^-1=e*b*e^-1=b*c=c*b,d*c*d^-1=b,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

Export

Subgroup lattice of C20.S4 in TeX

׿
×
𝔽