Extensions 1→N→G→Q→1 with N=C10 and Q=C4×A4

Direct product G=N×Q with N=C10 and Q=C4×A4

Semidirect products G=N:Q with N=C10 and Q=C4×A4
extensionφ:Q→Aut NdρLabelID
C10⋊(C4×A4) = C2×A4×F5φ: C4×A4/A4C4 ⊆ Aut C103012+C10:(C4xA4)480,1192
C102(C4×A4) = C2×A4×Dic5φ: C4×A4/C2×A4C2 ⊆ Aut C10120C10:2(C4xA4)480,1044

Non-split extensions G=N.Q with N=C10 and Q=C4×A4
extensionφ:Q→Aut NdρLabelID
C10.1(C4×A4) = SL2(𝔽3).F5φ: C4×A4/A4C4 ⊆ Aut C101608+C10.1(C4xA4)480,964
C10.2(C4×A4) = F5×SL2(𝔽3)φ: C4×A4/A4C4 ⊆ Aut C10408-C10.2(C4xA4)480,965
C10.3(C4×A4) = A4×C5⋊C8φ: C4×A4/A4C4 ⊆ Aut C1012012-C10.3(C4xA4)480,966
C10.4(C4×A4) = A4×C52C8φ: C4×A4/C2×A4C2 ⊆ Aut C101206C10.4(C4xA4)480,265
C10.5(C4×A4) = Dic5×SL2(𝔽3)φ: C4×A4/C2×A4C2 ⊆ Aut C10160C10.5(C4xA4)480,266
C10.6(C4×A4) = SL2(𝔽3).Dic5φ: C4×A4/C2×A4C2 ⊆ Aut C101604C10.6(C4xA4)480,267
C10.7(C4×A4) = C20×SL2(𝔽3)central extension (φ=1)160C10.7(C4xA4)480,655
C10.8(C4×A4) = A4×C40central extension (φ=1)1203C10.8(C4xA4)480,659
C10.9(C4×A4) = C5×C8.A4central extension (φ=1)1602C10.9(C4xA4)480,660