Copied to
clipboard

G = A4×C5⋊C8order 480 = 25·3·5

Direct product of A4 and C5⋊C8

direct product, metabelian, soluble, monomial, A-group

Aliases: A4×C5⋊C8, C5⋊(C8×A4), (C2×C10)⋊C24, (C5×A4)⋊2C8, C2.1(A4×F5), C10.3(C4×A4), (C2×A4).2F5, (C10×A4).2C4, (C22×C10).C12, C23.2(C3×F5), Dic5.5(C2×A4), (A4×Dic5).4C2, (C22×Dic5).2C6, C22⋊(C3×C5⋊C8), (C22×C5⋊C8)⋊C3, SmallGroup(480,966)

Series: Derived Chief Lower central Upper central

C1C2×C10 — A4×C5⋊C8
C1C5C2×C10C22×C10C22×Dic5A4×Dic5 — A4×C5⋊C8
C2×C10 — A4×C5⋊C8
C1C2

Generators and relations for A4×C5⋊C8
 G = < a,b,c,d,e | a2=b2=c3=d5=e8=1, cac-1=ab=ba, ad=da, ae=ea, cbc-1=a, bd=db, be=eb, cd=dc, ce=ec, ede-1=d3 >

3C2
3C2
4C3
3C22
3C22
5C4
15C4
4C6
3C10
3C10
4C15
5C8
15C2×C4
15C8
15C2×C4
20C12
3C2×C10
3C2×C10
3Dic5
4C30
5C22×C4
15C2×C8
15C2×C8
20C24
3C2×Dic5
3C2×Dic5
3C5⋊C8
4C3×Dic5
5C22×C8
5C4×A4
3C2×C5⋊C8
3C2×C5⋊C8
4C3×C5⋊C8
5C8×A4

Smallest permutation representation of A4×C5⋊C8
On 120 points
Generators in S120
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(41 45)(42 46)(43 47)(44 48)(49 53)(50 54)(51 55)(52 56)(65 69)(66 70)(67 71)(68 72)(73 77)(74 78)(75 79)(76 80)(89 93)(90 94)(91 95)(92 96)(97 101)(98 102)(99 103)(100 104)(105 109)(106 110)(107 111)(108 112)
(9 13)(10 14)(11 15)(12 16)(25 29)(26 30)(27 31)(28 32)(33 37)(34 38)(35 39)(36 40)(57 61)(58 62)(59 63)(60 64)(65 69)(66 70)(67 71)(68 72)(73 77)(74 78)(75 79)(76 80)(81 85)(82 86)(83 87)(84 88)(89 93)(90 94)(91 95)(92 96)(97 101)(98 102)(99 103)(100 104)(113 117)(114 118)(115 119)(116 120)
(1 100 60)(2 101 61)(3 102 62)(4 103 63)(5 104 64)(6 97 57)(7 98 58)(8 99 59)(9 86 51)(10 87 52)(11 88 53)(12 81 54)(13 82 55)(14 83 56)(15 84 49)(16 85 50)(17 94 119)(18 95 120)(19 96 113)(20 89 114)(21 90 115)(22 91 116)(23 92 117)(24 93 118)(25 45 66)(26 46 67)(27 47 68)(28 48 69)(29 41 70)(30 42 71)(31 43 72)(32 44 65)(33 108 74)(34 109 75)(35 110 76)(36 111 77)(37 112 78)(38 105 79)(39 106 80)(40 107 73)
(1 53 23 46 109)(2 47 54 110 24)(3 111 48 17 55)(4 18 112 56 41)(5 49 19 42 105)(6 43 50 106 20)(7 107 44 21 51)(8 22 108 52 45)(9 98 73 65 90)(10 66 99 91 74)(11 92 67 75 100)(12 76 93 101 68)(13 102 77 69 94)(14 70 103 95 78)(15 96 71 79 104)(16 80 89 97 72)(25 59 116 33 87)(26 34 60 88 117)(27 81 35 118 61)(28 119 82 62 36)(29 63 120 37 83)(30 38 64 84 113)(31 85 39 114 57)(32 115 86 58 40)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)

G:=sub<Sym(120)| (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(65,69)(66,70)(67,71)(68,72)(73,77)(74,78)(75,79)(76,80)(89,93)(90,94)(91,95)(92,96)(97,101)(98,102)(99,103)(100,104)(105,109)(106,110)(107,111)(108,112), (9,13)(10,14)(11,15)(12,16)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(57,61)(58,62)(59,63)(60,64)(65,69)(66,70)(67,71)(68,72)(73,77)(74,78)(75,79)(76,80)(81,85)(82,86)(83,87)(84,88)(89,93)(90,94)(91,95)(92,96)(97,101)(98,102)(99,103)(100,104)(113,117)(114,118)(115,119)(116,120), (1,100,60)(2,101,61)(3,102,62)(4,103,63)(5,104,64)(6,97,57)(7,98,58)(8,99,59)(9,86,51)(10,87,52)(11,88,53)(12,81,54)(13,82,55)(14,83,56)(15,84,49)(16,85,50)(17,94,119)(18,95,120)(19,96,113)(20,89,114)(21,90,115)(22,91,116)(23,92,117)(24,93,118)(25,45,66)(26,46,67)(27,47,68)(28,48,69)(29,41,70)(30,42,71)(31,43,72)(32,44,65)(33,108,74)(34,109,75)(35,110,76)(36,111,77)(37,112,78)(38,105,79)(39,106,80)(40,107,73), (1,53,23,46,109)(2,47,54,110,24)(3,111,48,17,55)(4,18,112,56,41)(5,49,19,42,105)(6,43,50,106,20)(7,107,44,21,51)(8,22,108,52,45)(9,98,73,65,90)(10,66,99,91,74)(11,92,67,75,100)(12,76,93,101,68)(13,102,77,69,94)(14,70,103,95,78)(15,96,71,79,104)(16,80,89,97,72)(25,59,116,33,87)(26,34,60,88,117)(27,81,35,118,61)(28,119,82,62,36)(29,63,120,37,83)(30,38,64,84,113)(31,85,39,114,57)(32,115,86,58,40), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)>;

G:=Group( (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(65,69)(66,70)(67,71)(68,72)(73,77)(74,78)(75,79)(76,80)(89,93)(90,94)(91,95)(92,96)(97,101)(98,102)(99,103)(100,104)(105,109)(106,110)(107,111)(108,112), (9,13)(10,14)(11,15)(12,16)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(57,61)(58,62)(59,63)(60,64)(65,69)(66,70)(67,71)(68,72)(73,77)(74,78)(75,79)(76,80)(81,85)(82,86)(83,87)(84,88)(89,93)(90,94)(91,95)(92,96)(97,101)(98,102)(99,103)(100,104)(113,117)(114,118)(115,119)(116,120), (1,100,60)(2,101,61)(3,102,62)(4,103,63)(5,104,64)(6,97,57)(7,98,58)(8,99,59)(9,86,51)(10,87,52)(11,88,53)(12,81,54)(13,82,55)(14,83,56)(15,84,49)(16,85,50)(17,94,119)(18,95,120)(19,96,113)(20,89,114)(21,90,115)(22,91,116)(23,92,117)(24,93,118)(25,45,66)(26,46,67)(27,47,68)(28,48,69)(29,41,70)(30,42,71)(31,43,72)(32,44,65)(33,108,74)(34,109,75)(35,110,76)(36,111,77)(37,112,78)(38,105,79)(39,106,80)(40,107,73), (1,53,23,46,109)(2,47,54,110,24)(3,111,48,17,55)(4,18,112,56,41)(5,49,19,42,105)(6,43,50,106,20)(7,107,44,21,51)(8,22,108,52,45)(9,98,73,65,90)(10,66,99,91,74)(11,92,67,75,100)(12,76,93,101,68)(13,102,77,69,94)(14,70,103,95,78)(15,96,71,79,104)(16,80,89,97,72)(25,59,116,33,87)(26,34,60,88,117)(27,81,35,118,61)(28,119,82,62,36)(29,63,120,37,83)(30,38,64,84,113)(31,85,39,114,57)(32,115,86,58,40), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120) );

G=PermutationGroup([[(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(41,45),(42,46),(43,47),(44,48),(49,53),(50,54),(51,55),(52,56),(65,69),(66,70),(67,71),(68,72),(73,77),(74,78),(75,79),(76,80),(89,93),(90,94),(91,95),(92,96),(97,101),(98,102),(99,103),(100,104),(105,109),(106,110),(107,111),(108,112)], [(9,13),(10,14),(11,15),(12,16),(25,29),(26,30),(27,31),(28,32),(33,37),(34,38),(35,39),(36,40),(57,61),(58,62),(59,63),(60,64),(65,69),(66,70),(67,71),(68,72),(73,77),(74,78),(75,79),(76,80),(81,85),(82,86),(83,87),(84,88),(89,93),(90,94),(91,95),(92,96),(97,101),(98,102),(99,103),(100,104),(113,117),(114,118),(115,119),(116,120)], [(1,100,60),(2,101,61),(3,102,62),(4,103,63),(5,104,64),(6,97,57),(7,98,58),(8,99,59),(9,86,51),(10,87,52),(11,88,53),(12,81,54),(13,82,55),(14,83,56),(15,84,49),(16,85,50),(17,94,119),(18,95,120),(19,96,113),(20,89,114),(21,90,115),(22,91,116),(23,92,117),(24,93,118),(25,45,66),(26,46,67),(27,47,68),(28,48,69),(29,41,70),(30,42,71),(31,43,72),(32,44,65),(33,108,74),(34,109,75),(35,110,76),(36,111,77),(37,112,78),(38,105,79),(39,106,80),(40,107,73)], [(1,53,23,46,109),(2,47,54,110,24),(3,111,48,17,55),(4,18,112,56,41),(5,49,19,42,105),(6,43,50,106,20),(7,107,44,21,51),(8,22,108,52,45),(9,98,73,65,90),(10,66,99,91,74),(11,92,67,75,100),(12,76,93,101,68),(13,102,77,69,94),(14,70,103,95,78),(15,96,71,79,104),(16,80,89,97,72),(25,59,116,33,87),(26,34,60,88,117),(27,81,35,118,61),(28,119,82,62,36),(29,63,120,37,83),(30,38,64,84,113),(31,85,39,114,57),(32,115,86,58,40)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120)]])

40 conjugacy classes

class 1 2A2B2C3A3B4A4B4C4D 5 6A6B8A8B8C8D8E8F8G8H10A10B10C12A12B12C12D15A15B24A···24H30A30B
order12223344445668888888810101012121212151524···243030
size1133445515154445555151515154121220202020161620···201616

40 irreducible representations

dim11111111121233334444
type+++-+++-
imageC1C2C3C4C6C8C12C24A4×F5A4×C5⋊C8A4C2×A4C4×A4C8×A4F5C5⋊C8C3×F5C3×C5⋊C8
kernelA4×C5⋊C8A4×Dic5C22×C5⋊C8C10×A4C22×Dic5C5×A4C22×C10C2×C10C2C1C5⋊C8Dic5C10C5C2×A4A4C23C22
# reps112224481111241122

Matrix representation of A4×C5⋊C8 in GL7(𝔽241)

240000000
0100000
02262400000
0001000
0000100
0000010
0000001
,
1000000
024000000
1602400000
0001000
0000100
0000010
0000001
,
0100000
162262390000
00150000
0001000
0000100
0000010
0000001
,
1000000
0100000
0010000
000000240
000100240
000010240
000001240
,
233000000
023300000
002330000
0005118032157
000839694208
00014514733240
0008417919061

G:=sub<GL(7,GF(241))| [240,0,0,0,0,0,0,0,1,226,0,0,0,0,0,0,240,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,16,0,0,0,0,0,240,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[0,16,0,0,0,0,0,1,226,0,0,0,0,0,0,239,15,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,240,240,240,240],[233,0,0,0,0,0,0,0,233,0,0,0,0,0,0,0,233,0,0,0,0,0,0,0,51,83,145,84,0,0,0,180,96,147,179,0,0,0,32,94,33,190,0,0,0,157,208,240,61] >;

A4×C5⋊C8 in GAP, Magma, Sage, TeX

A_4\times C_5\rtimes C_8
% in TeX

G:=Group("A4xC5:C8");
// GroupNames label

G:=SmallGroup(480,966);
// by ID

G=gap.SmallGroup(480,966);
# by ID

G:=PCGroup([7,-2,-3,-2,-2,-2,2,-5,42,58,1271,516,9414,3156]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^3=d^5=e^8=1,c*a*c^-1=a*b=b*a,a*d=d*a,a*e=e*a,c*b*c^-1=a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^3>;
// generators/relations

Export

Subgroup lattice of A4×C5⋊C8 in TeX

׿
×
𝔽