Copied to
clipboard

G = A4×C52C8order 480 = 25·3·5

Direct product of A4 and C52C8

direct product, metabelian, soluble, monomial, A-group

Aliases: A4×C52C8, C52(C8×A4), (C5×A4)⋊4C8, C4.4(D5×A4), (C2×C10)⋊2C24, C20.4(C2×A4), C10.4(C4×A4), (C4×A4).4D5, (A4×C20).5C2, (C10×A4).4C4, C2.1(A4×Dic5), (C22×C20).2C6, (C2×A4).2Dic5, (C22×C10).2C12, C23.2(C3×Dic5), (C22×C52C8)⋊C3, C22⋊(C3×C52C8), (C22×C4).2(C3×D5), SmallGroup(480,265)

Series: Derived Chief Lower central Upper central

C1C2×C10 — A4×C52C8
C1C5C2×C10C22×C10C22×C20A4×C20 — A4×C52C8
C2×C10 — A4×C52C8
C1C4

Generators and relations for A4×C52C8
 G = < a,b,c,d,e | a2=b2=c3=d5=e8=1, cac-1=ab=ba, ad=da, ae=ea, cbc-1=a, bd=db, be=eb, cd=dc, ce=ec, ede-1=d-1 >

3C2
3C2
4C3
3C4
3C22
3C22
4C6
3C10
3C10
4C15
3C2×C4
3C2×C4
5C8
15C8
4C12
3C2×C10
3C2×C10
3C20
4C30
15C2×C8
15C2×C8
20C24
3C2×C20
3C2×C20
3C52C8
4C60
5C22×C8
3C2×C52C8
3C2×C52C8
4C3×C52C8
5C8×A4

Smallest permutation representation of A4×C52C8
On 120 points
Generators in S120
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(41 45)(42 46)(43 47)(44 48)(49 53)(50 54)(51 55)(52 56)(65 69)(66 70)(67 71)(68 72)(73 77)(74 78)(75 79)(76 80)(89 93)(90 94)(91 95)(92 96)(97 101)(98 102)(99 103)(100 104)(105 109)(106 110)(107 111)(108 112)
(9 13)(10 14)(11 15)(12 16)(25 29)(26 30)(27 31)(28 32)(33 37)(34 38)(35 39)(36 40)(57 61)(58 62)(59 63)(60 64)(65 69)(66 70)(67 71)(68 72)(73 77)(74 78)(75 79)(76 80)(81 85)(82 86)(83 87)(84 88)(89 93)(90 94)(91 95)(92 96)(97 101)(98 102)(99 103)(100 104)(113 117)(114 118)(115 119)(116 120)
(1 100 60)(2 101 61)(3 102 62)(4 103 63)(5 104 64)(6 97 57)(7 98 58)(8 99 59)(9 86 51)(10 87 52)(11 88 53)(12 81 54)(13 82 55)(14 83 56)(15 84 49)(16 85 50)(17 94 119)(18 95 120)(19 96 113)(20 89 114)(21 90 115)(22 91 116)(23 92 117)(24 93 118)(25 45 66)(26 46 67)(27 47 68)(28 48 69)(29 41 70)(30 42 71)(31 43 72)(32 44 65)(33 108 74)(34 109 75)(35 110 76)(36 111 77)(37 112 78)(38 105 79)(39 106 80)(40 107 73)
(1 53 23 46 109)(2 110 47 24 54)(3 55 17 48 111)(4 112 41 18 56)(5 49 19 42 105)(6 106 43 20 50)(7 51 21 44 107)(8 108 45 22 52)(9 90 65 73 98)(10 99 74 66 91)(11 92 67 75 100)(12 101 76 68 93)(13 94 69 77 102)(14 103 78 70 95)(15 96 71 79 104)(16 97 80 72 89)(25 116 87 59 33)(26 34 60 88 117)(27 118 81 61 35)(28 36 62 82 119)(29 120 83 63 37)(30 38 64 84 113)(31 114 85 57 39)(32 40 58 86 115)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)

G:=sub<Sym(120)| (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(65,69)(66,70)(67,71)(68,72)(73,77)(74,78)(75,79)(76,80)(89,93)(90,94)(91,95)(92,96)(97,101)(98,102)(99,103)(100,104)(105,109)(106,110)(107,111)(108,112), (9,13)(10,14)(11,15)(12,16)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(57,61)(58,62)(59,63)(60,64)(65,69)(66,70)(67,71)(68,72)(73,77)(74,78)(75,79)(76,80)(81,85)(82,86)(83,87)(84,88)(89,93)(90,94)(91,95)(92,96)(97,101)(98,102)(99,103)(100,104)(113,117)(114,118)(115,119)(116,120), (1,100,60)(2,101,61)(3,102,62)(4,103,63)(5,104,64)(6,97,57)(7,98,58)(8,99,59)(9,86,51)(10,87,52)(11,88,53)(12,81,54)(13,82,55)(14,83,56)(15,84,49)(16,85,50)(17,94,119)(18,95,120)(19,96,113)(20,89,114)(21,90,115)(22,91,116)(23,92,117)(24,93,118)(25,45,66)(26,46,67)(27,47,68)(28,48,69)(29,41,70)(30,42,71)(31,43,72)(32,44,65)(33,108,74)(34,109,75)(35,110,76)(36,111,77)(37,112,78)(38,105,79)(39,106,80)(40,107,73), (1,53,23,46,109)(2,110,47,24,54)(3,55,17,48,111)(4,112,41,18,56)(5,49,19,42,105)(6,106,43,20,50)(7,51,21,44,107)(8,108,45,22,52)(9,90,65,73,98)(10,99,74,66,91)(11,92,67,75,100)(12,101,76,68,93)(13,94,69,77,102)(14,103,78,70,95)(15,96,71,79,104)(16,97,80,72,89)(25,116,87,59,33)(26,34,60,88,117)(27,118,81,61,35)(28,36,62,82,119)(29,120,83,63,37)(30,38,64,84,113)(31,114,85,57,39)(32,40,58,86,115), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)>;

G:=Group( (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(65,69)(66,70)(67,71)(68,72)(73,77)(74,78)(75,79)(76,80)(89,93)(90,94)(91,95)(92,96)(97,101)(98,102)(99,103)(100,104)(105,109)(106,110)(107,111)(108,112), (9,13)(10,14)(11,15)(12,16)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(57,61)(58,62)(59,63)(60,64)(65,69)(66,70)(67,71)(68,72)(73,77)(74,78)(75,79)(76,80)(81,85)(82,86)(83,87)(84,88)(89,93)(90,94)(91,95)(92,96)(97,101)(98,102)(99,103)(100,104)(113,117)(114,118)(115,119)(116,120), (1,100,60)(2,101,61)(3,102,62)(4,103,63)(5,104,64)(6,97,57)(7,98,58)(8,99,59)(9,86,51)(10,87,52)(11,88,53)(12,81,54)(13,82,55)(14,83,56)(15,84,49)(16,85,50)(17,94,119)(18,95,120)(19,96,113)(20,89,114)(21,90,115)(22,91,116)(23,92,117)(24,93,118)(25,45,66)(26,46,67)(27,47,68)(28,48,69)(29,41,70)(30,42,71)(31,43,72)(32,44,65)(33,108,74)(34,109,75)(35,110,76)(36,111,77)(37,112,78)(38,105,79)(39,106,80)(40,107,73), (1,53,23,46,109)(2,110,47,24,54)(3,55,17,48,111)(4,112,41,18,56)(5,49,19,42,105)(6,106,43,20,50)(7,51,21,44,107)(8,108,45,22,52)(9,90,65,73,98)(10,99,74,66,91)(11,92,67,75,100)(12,101,76,68,93)(13,94,69,77,102)(14,103,78,70,95)(15,96,71,79,104)(16,97,80,72,89)(25,116,87,59,33)(26,34,60,88,117)(27,118,81,61,35)(28,36,62,82,119)(29,120,83,63,37)(30,38,64,84,113)(31,114,85,57,39)(32,40,58,86,115), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120) );

G=PermutationGroup([[(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(41,45),(42,46),(43,47),(44,48),(49,53),(50,54),(51,55),(52,56),(65,69),(66,70),(67,71),(68,72),(73,77),(74,78),(75,79),(76,80),(89,93),(90,94),(91,95),(92,96),(97,101),(98,102),(99,103),(100,104),(105,109),(106,110),(107,111),(108,112)], [(9,13),(10,14),(11,15),(12,16),(25,29),(26,30),(27,31),(28,32),(33,37),(34,38),(35,39),(36,40),(57,61),(58,62),(59,63),(60,64),(65,69),(66,70),(67,71),(68,72),(73,77),(74,78),(75,79),(76,80),(81,85),(82,86),(83,87),(84,88),(89,93),(90,94),(91,95),(92,96),(97,101),(98,102),(99,103),(100,104),(113,117),(114,118),(115,119),(116,120)], [(1,100,60),(2,101,61),(3,102,62),(4,103,63),(5,104,64),(6,97,57),(7,98,58),(8,99,59),(9,86,51),(10,87,52),(11,88,53),(12,81,54),(13,82,55),(14,83,56),(15,84,49),(16,85,50),(17,94,119),(18,95,120),(19,96,113),(20,89,114),(21,90,115),(22,91,116),(23,92,117),(24,93,118),(25,45,66),(26,46,67),(27,47,68),(28,48,69),(29,41,70),(30,42,71),(31,43,72),(32,44,65),(33,108,74),(34,109,75),(35,110,76),(36,111,77),(37,112,78),(38,105,79),(39,106,80),(40,107,73)], [(1,53,23,46,109),(2,110,47,24,54),(3,55,17,48,111),(4,112,41,18,56),(5,49,19,42,105),(6,106,43,20,50),(7,51,21,44,107),(8,108,45,22,52),(9,90,65,73,98),(10,99,74,66,91),(11,92,67,75,100),(12,101,76,68,93),(13,94,69,77,102),(14,103,78,70,95),(15,96,71,79,104),(16,97,80,72,89),(25,116,87,59,33),(26,34,60,88,117),(27,118,81,61,35),(28,36,62,82,119),(29,120,83,63,37),(30,38,64,84,113),(31,114,85,57,39),(32,40,58,86,115)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120)]])

64 conjugacy classes

class 1 2A2B2C3A3B4A4B4C4D5A5B6A6B8A8B8C8D8E8F8G8H10A10B10C10D10E10F12A12B12C12D15A15B15C15D20A20B20C20D20E20F20G20H24A···24H30A30B30C30D60A···60H
order12223344445566888888881010101010101212121215151515202020202020202024···243030303060···60
size11334411332244555515151515226666444488882222666620···2088888···8

64 irreducible representations

dim111111112222223333666
type+++-+++-
imageC1C2C3C4C6C8C12C24D5Dic5C3×D5C52C8C3×Dic5C3×C52C8A4C2×A4C4×A4C8×A4D5×A4A4×Dic5A4×C52C8
kernelA4×C52C8A4×C20C22×C52C8C10×A4C22×C20C5×A4C22×C10C2×C10C4×A4C2×A4C22×C4A4C23C22C52C8C20C10C5C4C2C1
# reps112224482244481124224

Matrix representation of A4×C52C8 in GL5(𝔽241)

10000
01000
0024000
000116
0000240
,
10000
01000
0010226
0002400
0000240
,
2250000
0225000
0022610
001600
00239015
,
0240000
151000
00100
00010
00001
,
84158000
212157000
0021100
0002110
0000211

G:=sub<GL(5,GF(241))| [1,0,0,0,0,0,1,0,0,0,0,0,240,0,0,0,0,0,1,0,0,0,0,16,240],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,240,0,0,0,226,0,240],[225,0,0,0,0,0,225,0,0,0,0,0,226,16,239,0,0,1,0,0,0,0,0,0,15],[0,1,0,0,0,240,51,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[84,212,0,0,0,158,157,0,0,0,0,0,211,0,0,0,0,0,211,0,0,0,0,0,211] >;

A4×C52C8 in GAP, Magma, Sage, TeX

A_4\times C_5\rtimes_2C_8
% in TeX

G:=Group("A4xC5:2C8");
// GroupNames label

G:=SmallGroup(480,265);
// by ID

G=gap.SmallGroup(480,265);
# by ID

G:=PCGroup([7,-2,-3,-2,-2,-2,2,-5,42,58,1271,516,18822]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^3=d^5=e^8=1,c*a*c^-1=a*b=b*a,a*d=d*a,a*e=e*a,c*b*c^-1=a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

Export

Subgroup lattice of A4×C52C8 in TeX

׿
×
𝔽