Extensions 1→N→G→Q→1 with N=C3×D40 and Q=C2

Direct product G=N×Q with N=C3×D40 and Q=C2
dρLabelID
C6×D40240C6xD40480,696

Semidirect products G=N:Q with N=C3×D40 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×D40)⋊1C2 = C3⋊D80φ: C2/C1C2 ⊆ Out C3×D402404+(C3xD40):1C2480,14
(C3×D40)⋊2C2 = S3×D40φ: C2/C1C2 ⊆ Out C3×D401204+(C3xD40):2C2480,328
(C3×D40)⋊3C2 = D407S3φ: C2/C1C2 ⊆ Out C3×D402404-(C3xD40):3C2480,349
(C3×D40)⋊4C2 = D40⋊S3φ: C2/C1C2 ⊆ Out C3×D401204(C3xD40):4C2480,330
(C3×D40)⋊5C2 = C3×D80φ: C2/C1C2 ⊆ Out C3×D402402(C3xD40):5C2480,77
(C3×D40)⋊6C2 = C15⋊D16φ: C2/C1C2 ⊆ Out C3×D402404(C3xD40):6C2480,13
(C3×D40)⋊7C2 = C405D6φ: C2/C1C2 ⊆ Out C3×D401204(C3xD40):7C2480,332
(C3×D40)⋊8C2 = D405S3φ: C2/C1C2 ⊆ Out C3×D402404(C3xD40):8C2480,353
(C3×D40)⋊9C2 = C408D6φ: C2/C1C2 ⊆ Out C3×D401204(C3xD40):9C2480,334
(C3×D40)⋊10C2 = C3×C8⋊D10φ: C2/C1C2 ⊆ Out C3×D401204(C3xD40):10C2480,701
(C3×D40)⋊11C2 = C3×C5⋊D16φ: C2/C1C2 ⊆ Out C3×D402404(C3xD40):11C2480,104
(C3×D40)⋊12C2 = C3×D5×D8φ: C2/C1C2 ⊆ Out C3×D401204(C3xD40):12C2480,703
(C3×D40)⋊13C2 = C3×Q8.D10φ: C2/C1C2 ⊆ Out C3×D402404(C3xD40):13C2480,712
(C3×D40)⋊14C2 = C3×D40⋊C2φ: C2/C1C2 ⊆ Out C3×D401204(C3xD40):14C2480,707
(C3×D40)⋊15C2 = C3×D407C2φ: trivial image2402(C3xD40):15C2480,697

Non-split extensions G=N.Q with N=C3×D40 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×D40).1C2 = D40.S3φ: C2/C1C2 ⊆ Out C3×D402404-(C3xD40).1C2480,18
(C3×D40).2C2 = C3×C16⋊D5φ: C2/C1C2 ⊆ Out C3×D402402(C3xD40).2C2480,78
(C3×D40).3C2 = C40.D6φ: C2/C1C2 ⊆ Out C3×D402404(C3xD40).3C2480,16
(C3×D40).4C2 = C3×C5⋊SD32φ: C2/C1C2 ⊆ Out C3×D402404(C3xD40).4C2480,106

׿
×
𝔽