Copied to
clipboard

G = D40.S3order 480 = 25·3·5

1st non-split extension by D40 of S3 acting via S3/C3=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C30.6D8, C6.7D40, C153SD32, D40.1S3, C12.2D20, C60.25D4, C40.41D6, C24.8D10, Dic603C2, C120.3C22, C3⋊C162D5, C8.8(S3×D5), C51(D8.S3), C32(C16⋊D5), (C3×D40).1C2, C10.2(D4⋊S3), C4.2(C3⋊D20), C2.5(C3⋊D40), C20.50(C3⋊D4), (C5×C3⋊C16)⋊2C2, SmallGroup(480,18)

Series: Derived Chief Lower central Upper central

C1C120 — D40.S3
C1C5C15C30C60C120C3×D40 — D40.S3
C15C30C60C120 — D40.S3
C1C2C4C8

Generators and relations for D40.S3
 G = < a,b,c,d | a40=b2=c3=1, d2=a35, bab=a-1, ac=ca, ad=da, bc=cb, dbd-1=a15b, dcd-1=c-1 >

40C2
20C22
60C4
40C6
8D5
10D4
30Q8
20C2×C6
20Dic3
4D10
12Dic5
8C3×D5
3C16
5D8
15Q16
10C3×D4
10Dic6
2D20
6Dic10
4Dic15
4C6×D5
15SD32
5Dic12
5C3×D8
3Dic20
3C80
2C3×D20
2Dic30
5D8.S3
3C16⋊D5

Smallest permutation representation of D40.S3
On 240 points
Generators in S240
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)(161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200)(201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240)
(1 40)(2 39)(3 38)(4 37)(5 36)(6 35)(7 34)(8 33)(9 32)(10 31)(11 30)(12 29)(13 28)(14 27)(15 26)(16 25)(17 24)(18 23)(19 22)(20 21)(41 69)(42 68)(43 67)(44 66)(45 65)(46 64)(47 63)(48 62)(49 61)(50 60)(51 59)(52 58)(53 57)(54 56)(70 80)(71 79)(72 78)(73 77)(74 76)(81 98)(82 97)(83 96)(84 95)(85 94)(86 93)(87 92)(88 91)(89 90)(99 120)(100 119)(101 118)(102 117)(103 116)(104 115)(105 114)(106 113)(107 112)(108 111)(109 110)(121 142)(122 141)(123 140)(124 139)(125 138)(126 137)(127 136)(128 135)(129 134)(130 133)(131 132)(143 160)(144 159)(145 158)(146 157)(147 156)(148 155)(149 154)(150 153)(151 152)(161 163)(164 200)(165 199)(166 198)(167 197)(168 196)(169 195)(170 194)(171 193)(172 192)(173 191)(174 190)(175 189)(176 188)(177 187)(178 186)(179 185)(180 184)(181 183)(201 221)(202 220)(203 219)(204 218)(205 217)(206 216)(207 215)(208 214)(209 213)(210 212)(222 240)(223 239)(224 238)(225 237)(226 236)(227 235)(228 234)(229 233)(230 232)
(1 152 110)(2 153 111)(3 154 112)(4 155 113)(5 156 114)(6 157 115)(7 158 116)(8 159 117)(9 160 118)(10 121 119)(11 122 120)(12 123 81)(13 124 82)(14 125 83)(15 126 84)(16 127 85)(17 128 86)(18 129 87)(19 130 88)(20 131 89)(21 132 90)(22 133 91)(23 134 92)(24 135 93)(25 136 94)(26 137 95)(27 138 96)(28 139 97)(29 140 98)(30 141 99)(31 142 100)(32 143 101)(33 144 102)(34 145 103)(35 146 104)(36 147 105)(37 148 106)(38 149 107)(39 150 108)(40 151 109)(41 188 217)(42 189 218)(43 190 219)(44 191 220)(45 192 221)(46 193 222)(47 194 223)(48 195 224)(49 196 225)(50 197 226)(51 198 227)(52 199 228)(53 200 229)(54 161 230)(55 162 231)(56 163 232)(57 164 233)(58 165 234)(59 166 235)(60 167 236)(61 168 237)(62 169 238)(63 170 239)(64 171 240)(65 172 201)(66 173 202)(67 174 203)(68 175 204)(69 176 205)(70 177 206)(71 178 207)(72 179 208)(73 180 209)(74 181 210)(75 182 211)(76 183 212)(77 184 213)(78 185 214)(79 186 215)(80 187 216)
(1 190 36 185 31 180 26 175 21 170 16 165 11 200 6 195)(2 191 37 186 32 181 27 176 22 171 17 166 12 161 7 196)(3 192 38 187 33 182 28 177 23 172 18 167 13 162 8 197)(4 193 39 188 34 183 29 178 24 173 19 168 14 163 9 198)(5 194 40 189 35 184 30 179 25 174 20 169 15 164 10 199)(41 145 76 140 71 135 66 130 61 125 56 160 51 155 46 150)(42 146 77 141 72 136 67 131 62 126 57 121 52 156 47 151)(43 147 78 142 73 137 68 132 63 127 58 122 53 157 48 152)(44 148 79 143 74 138 69 133 64 128 59 123 54 158 49 153)(45 149 80 144 75 139 70 134 65 129 60 124 55 159 50 154)(81 230 116 225 111 220 106 215 101 210 96 205 91 240 86 235)(82 231 117 226 112 221 107 216 102 211 97 206 92 201 87 236)(83 232 118 227 113 222 108 217 103 212 98 207 93 202 88 237)(84 233 119 228 114 223 109 218 104 213 99 208 94 203 89 238)(85 234 120 229 115 224 110 219 105 214 100 209 95 204 90 239)

G:=sub<Sym(240)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200)(201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240), (1,40)(2,39)(3,38)(4,37)(5,36)(6,35)(7,34)(8,33)(9,32)(10,31)(11,30)(12,29)(13,28)(14,27)(15,26)(16,25)(17,24)(18,23)(19,22)(20,21)(41,69)(42,68)(43,67)(44,66)(45,65)(46,64)(47,63)(48,62)(49,61)(50,60)(51,59)(52,58)(53,57)(54,56)(70,80)(71,79)(72,78)(73,77)(74,76)(81,98)(82,97)(83,96)(84,95)(85,94)(86,93)(87,92)(88,91)(89,90)(99,120)(100,119)(101,118)(102,117)(103,116)(104,115)(105,114)(106,113)(107,112)(108,111)(109,110)(121,142)(122,141)(123,140)(124,139)(125,138)(126,137)(127,136)(128,135)(129,134)(130,133)(131,132)(143,160)(144,159)(145,158)(146,157)(147,156)(148,155)(149,154)(150,153)(151,152)(161,163)(164,200)(165,199)(166,198)(167,197)(168,196)(169,195)(170,194)(171,193)(172,192)(173,191)(174,190)(175,189)(176,188)(177,187)(178,186)(179,185)(180,184)(181,183)(201,221)(202,220)(203,219)(204,218)(205,217)(206,216)(207,215)(208,214)(209,213)(210,212)(222,240)(223,239)(224,238)(225,237)(226,236)(227,235)(228,234)(229,233)(230,232), (1,152,110)(2,153,111)(3,154,112)(4,155,113)(5,156,114)(6,157,115)(7,158,116)(8,159,117)(9,160,118)(10,121,119)(11,122,120)(12,123,81)(13,124,82)(14,125,83)(15,126,84)(16,127,85)(17,128,86)(18,129,87)(19,130,88)(20,131,89)(21,132,90)(22,133,91)(23,134,92)(24,135,93)(25,136,94)(26,137,95)(27,138,96)(28,139,97)(29,140,98)(30,141,99)(31,142,100)(32,143,101)(33,144,102)(34,145,103)(35,146,104)(36,147,105)(37,148,106)(38,149,107)(39,150,108)(40,151,109)(41,188,217)(42,189,218)(43,190,219)(44,191,220)(45,192,221)(46,193,222)(47,194,223)(48,195,224)(49,196,225)(50,197,226)(51,198,227)(52,199,228)(53,200,229)(54,161,230)(55,162,231)(56,163,232)(57,164,233)(58,165,234)(59,166,235)(60,167,236)(61,168,237)(62,169,238)(63,170,239)(64,171,240)(65,172,201)(66,173,202)(67,174,203)(68,175,204)(69,176,205)(70,177,206)(71,178,207)(72,179,208)(73,180,209)(74,181,210)(75,182,211)(76,183,212)(77,184,213)(78,185,214)(79,186,215)(80,187,216), (1,190,36,185,31,180,26,175,21,170,16,165,11,200,6,195)(2,191,37,186,32,181,27,176,22,171,17,166,12,161,7,196)(3,192,38,187,33,182,28,177,23,172,18,167,13,162,8,197)(4,193,39,188,34,183,29,178,24,173,19,168,14,163,9,198)(5,194,40,189,35,184,30,179,25,174,20,169,15,164,10,199)(41,145,76,140,71,135,66,130,61,125,56,160,51,155,46,150)(42,146,77,141,72,136,67,131,62,126,57,121,52,156,47,151)(43,147,78,142,73,137,68,132,63,127,58,122,53,157,48,152)(44,148,79,143,74,138,69,133,64,128,59,123,54,158,49,153)(45,149,80,144,75,139,70,134,65,129,60,124,55,159,50,154)(81,230,116,225,111,220,106,215,101,210,96,205,91,240,86,235)(82,231,117,226,112,221,107,216,102,211,97,206,92,201,87,236)(83,232,118,227,113,222,108,217,103,212,98,207,93,202,88,237)(84,233,119,228,114,223,109,218,104,213,99,208,94,203,89,238)(85,234,120,229,115,224,110,219,105,214,100,209,95,204,90,239)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200)(201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240), (1,40)(2,39)(3,38)(4,37)(5,36)(6,35)(7,34)(8,33)(9,32)(10,31)(11,30)(12,29)(13,28)(14,27)(15,26)(16,25)(17,24)(18,23)(19,22)(20,21)(41,69)(42,68)(43,67)(44,66)(45,65)(46,64)(47,63)(48,62)(49,61)(50,60)(51,59)(52,58)(53,57)(54,56)(70,80)(71,79)(72,78)(73,77)(74,76)(81,98)(82,97)(83,96)(84,95)(85,94)(86,93)(87,92)(88,91)(89,90)(99,120)(100,119)(101,118)(102,117)(103,116)(104,115)(105,114)(106,113)(107,112)(108,111)(109,110)(121,142)(122,141)(123,140)(124,139)(125,138)(126,137)(127,136)(128,135)(129,134)(130,133)(131,132)(143,160)(144,159)(145,158)(146,157)(147,156)(148,155)(149,154)(150,153)(151,152)(161,163)(164,200)(165,199)(166,198)(167,197)(168,196)(169,195)(170,194)(171,193)(172,192)(173,191)(174,190)(175,189)(176,188)(177,187)(178,186)(179,185)(180,184)(181,183)(201,221)(202,220)(203,219)(204,218)(205,217)(206,216)(207,215)(208,214)(209,213)(210,212)(222,240)(223,239)(224,238)(225,237)(226,236)(227,235)(228,234)(229,233)(230,232), (1,152,110)(2,153,111)(3,154,112)(4,155,113)(5,156,114)(6,157,115)(7,158,116)(8,159,117)(9,160,118)(10,121,119)(11,122,120)(12,123,81)(13,124,82)(14,125,83)(15,126,84)(16,127,85)(17,128,86)(18,129,87)(19,130,88)(20,131,89)(21,132,90)(22,133,91)(23,134,92)(24,135,93)(25,136,94)(26,137,95)(27,138,96)(28,139,97)(29,140,98)(30,141,99)(31,142,100)(32,143,101)(33,144,102)(34,145,103)(35,146,104)(36,147,105)(37,148,106)(38,149,107)(39,150,108)(40,151,109)(41,188,217)(42,189,218)(43,190,219)(44,191,220)(45,192,221)(46,193,222)(47,194,223)(48,195,224)(49,196,225)(50,197,226)(51,198,227)(52,199,228)(53,200,229)(54,161,230)(55,162,231)(56,163,232)(57,164,233)(58,165,234)(59,166,235)(60,167,236)(61,168,237)(62,169,238)(63,170,239)(64,171,240)(65,172,201)(66,173,202)(67,174,203)(68,175,204)(69,176,205)(70,177,206)(71,178,207)(72,179,208)(73,180,209)(74,181,210)(75,182,211)(76,183,212)(77,184,213)(78,185,214)(79,186,215)(80,187,216), (1,190,36,185,31,180,26,175,21,170,16,165,11,200,6,195)(2,191,37,186,32,181,27,176,22,171,17,166,12,161,7,196)(3,192,38,187,33,182,28,177,23,172,18,167,13,162,8,197)(4,193,39,188,34,183,29,178,24,173,19,168,14,163,9,198)(5,194,40,189,35,184,30,179,25,174,20,169,15,164,10,199)(41,145,76,140,71,135,66,130,61,125,56,160,51,155,46,150)(42,146,77,141,72,136,67,131,62,126,57,121,52,156,47,151)(43,147,78,142,73,137,68,132,63,127,58,122,53,157,48,152)(44,148,79,143,74,138,69,133,64,128,59,123,54,158,49,153)(45,149,80,144,75,139,70,134,65,129,60,124,55,159,50,154)(81,230,116,225,111,220,106,215,101,210,96,205,91,240,86,235)(82,231,117,226,112,221,107,216,102,211,97,206,92,201,87,236)(83,232,118,227,113,222,108,217,103,212,98,207,93,202,88,237)(84,233,119,228,114,223,109,218,104,213,99,208,94,203,89,238)(85,234,120,229,115,224,110,219,105,214,100,209,95,204,90,239) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160),(161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200),(201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240)], [(1,40),(2,39),(3,38),(4,37),(5,36),(6,35),(7,34),(8,33),(9,32),(10,31),(11,30),(12,29),(13,28),(14,27),(15,26),(16,25),(17,24),(18,23),(19,22),(20,21),(41,69),(42,68),(43,67),(44,66),(45,65),(46,64),(47,63),(48,62),(49,61),(50,60),(51,59),(52,58),(53,57),(54,56),(70,80),(71,79),(72,78),(73,77),(74,76),(81,98),(82,97),(83,96),(84,95),(85,94),(86,93),(87,92),(88,91),(89,90),(99,120),(100,119),(101,118),(102,117),(103,116),(104,115),(105,114),(106,113),(107,112),(108,111),(109,110),(121,142),(122,141),(123,140),(124,139),(125,138),(126,137),(127,136),(128,135),(129,134),(130,133),(131,132),(143,160),(144,159),(145,158),(146,157),(147,156),(148,155),(149,154),(150,153),(151,152),(161,163),(164,200),(165,199),(166,198),(167,197),(168,196),(169,195),(170,194),(171,193),(172,192),(173,191),(174,190),(175,189),(176,188),(177,187),(178,186),(179,185),(180,184),(181,183),(201,221),(202,220),(203,219),(204,218),(205,217),(206,216),(207,215),(208,214),(209,213),(210,212),(222,240),(223,239),(224,238),(225,237),(226,236),(227,235),(228,234),(229,233),(230,232)], [(1,152,110),(2,153,111),(3,154,112),(4,155,113),(5,156,114),(6,157,115),(7,158,116),(8,159,117),(9,160,118),(10,121,119),(11,122,120),(12,123,81),(13,124,82),(14,125,83),(15,126,84),(16,127,85),(17,128,86),(18,129,87),(19,130,88),(20,131,89),(21,132,90),(22,133,91),(23,134,92),(24,135,93),(25,136,94),(26,137,95),(27,138,96),(28,139,97),(29,140,98),(30,141,99),(31,142,100),(32,143,101),(33,144,102),(34,145,103),(35,146,104),(36,147,105),(37,148,106),(38,149,107),(39,150,108),(40,151,109),(41,188,217),(42,189,218),(43,190,219),(44,191,220),(45,192,221),(46,193,222),(47,194,223),(48,195,224),(49,196,225),(50,197,226),(51,198,227),(52,199,228),(53,200,229),(54,161,230),(55,162,231),(56,163,232),(57,164,233),(58,165,234),(59,166,235),(60,167,236),(61,168,237),(62,169,238),(63,170,239),(64,171,240),(65,172,201),(66,173,202),(67,174,203),(68,175,204),(69,176,205),(70,177,206),(71,178,207),(72,179,208),(73,180,209),(74,181,210),(75,182,211),(76,183,212),(77,184,213),(78,185,214),(79,186,215),(80,187,216)], [(1,190,36,185,31,180,26,175,21,170,16,165,11,200,6,195),(2,191,37,186,32,181,27,176,22,171,17,166,12,161,7,196),(3,192,38,187,33,182,28,177,23,172,18,167,13,162,8,197),(4,193,39,188,34,183,29,178,24,173,19,168,14,163,9,198),(5,194,40,189,35,184,30,179,25,174,20,169,15,164,10,199),(41,145,76,140,71,135,66,130,61,125,56,160,51,155,46,150),(42,146,77,141,72,136,67,131,62,126,57,121,52,156,47,151),(43,147,78,142,73,137,68,132,63,127,58,122,53,157,48,152),(44,148,79,143,74,138,69,133,64,128,59,123,54,158,49,153),(45,149,80,144,75,139,70,134,65,129,60,124,55,159,50,154),(81,230,116,225,111,220,106,215,101,210,96,205,91,240,86,235),(82,231,117,226,112,221,107,216,102,211,97,206,92,201,87,236),(83,232,118,227,113,222,108,217,103,212,98,207,93,202,88,237),(84,233,119,228,114,223,109,218,104,213,99,208,94,203,89,238),(85,234,120,229,115,224,110,219,105,214,100,209,95,204,90,239)])

66 conjugacy classes

class 1 2A2B 3 4A4B5A5B6A6B6C8A8B10A10B 12 15A15B16A16B16C16D20A20B20C20D24A24B30A30B40A···40H60A60B60C60D80A···80P120A···120H
order1223445566688101012151516161616202020202424303040···406060606080···80120···120
size114022120222404022224446666222244442···244446···64···4

66 irreducible representations

dim111122222222222444444
type++++++++++++++-++-
imageC1C2C2C2S3D4D5D6D8D10C3⋊D4SD32D20D40C16⋊D5D4⋊S3S3×D5D8.S3C3⋊D20C3⋊D40D40.S3
kernelD40.S3C5×C3⋊C16C3×D40Dic60D40C60C3⋊C16C40C30C24C20C15C12C6C3C10C8C5C4C2C1
# reps1111112122244816122248

Matrix representation of D40.S3 in GL6(𝔽241)

2302300000
112300000
00018900
005119000
00002400
00000240
,
2302300000
230110000
005118900
005019000
00002400
0000641
,
100000
010000
001000
000100
0000150
0000213225
,
138410000
2001380000
001978500
001534400
0000179224
000021262

G:=sub<GL(6,GF(241))| [230,11,0,0,0,0,230,230,0,0,0,0,0,0,0,51,0,0,0,0,189,190,0,0,0,0,0,0,240,0,0,0,0,0,0,240],[230,230,0,0,0,0,230,11,0,0,0,0,0,0,51,50,0,0,0,0,189,190,0,0,0,0,0,0,240,64,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,15,213,0,0,0,0,0,225],[138,200,0,0,0,0,41,138,0,0,0,0,0,0,197,153,0,0,0,0,85,44,0,0,0,0,0,0,179,212,0,0,0,0,224,62] >;

D40.S3 in GAP, Magma, Sage, TeX

D_{40}.S_3
% in TeX

G:=Group("D40.S3");
// GroupNames label

G:=SmallGroup(480,18);
// by ID

G=gap.SmallGroup(480,18);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,85,92,590,58,675,80,1356,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^40=b^2=c^3=1,d^2=a^35,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=a^15*b,d*c*d^-1=c^-1>;
// generators/relations

Export

Subgroup lattice of D40.S3 in TeX

׿
×
𝔽