Extensions 1→N→G→Q→1 with N=C2×D12 and Q=D5

Direct product G=N×Q with N=C2×D12 and Q=D5
dρLabelID
C2×D5×D12120C2xD5xD12480,1087

Semidirect products G=N:Q with N=C2×D12 and Q=D5
extensionφ:Q→Out NdρLabelID
(C2×D12)⋊1D5 = C2×C5⋊D24φ: D5/C5C2 ⊆ Out C2×D12240(C2xD12):1D5480,378
(C2×D12)⋊2D5 = Dic5⋊D12φ: D5/C5C2 ⊆ Out C2×D12240(C2xD12):2D5480,492
(C2×D12)⋊3D5 = C60⋊D4φ: D5/C5C2 ⊆ Out C2×D12240(C2xD12):3D5480,525
(C2×D12)⋊4D5 = C20⋊D12φ: D5/C5C2 ⊆ Out C2×D12240(C2xD12):4D5480,527
(C2×D12)⋊5D5 = Dic152D4φ: D5/C5C2 ⊆ Out C2×D12240(C2xD12):5D5480,529
(C2×D12)⋊6D5 = D304D4φ: D5/C5C2 ⊆ Out C2×D12120(C2xD12):6D5480,551
(C2×D12)⋊7D5 = C2×C15⋊D8φ: D5/C5C2 ⊆ Out C2×D12240(C2xD12):7D5480,372
(C2×D12)⋊8D5 = D2021D6φ: D5/C5C2 ⊆ Out C2×D121204(C2xD12):8D5480,375
(C2×D12)⋊9D5 = D6036C22φ: D5/C5C2 ⊆ Out C2×D121204(C2xD12):9D5480,380
(C2×D12)⋊10D5 = C6010D4φ: D5/C5C2 ⊆ Out C2×D12240(C2xD12):10D5480,539
(C2×D12)⋊11D5 = C202D12φ: D5/C5C2 ⊆ Out C2×D12240(C2xD12):11D5480,542
(C2×D12)⋊12D5 = C2×D12⋊D5φ: D5/C5C2 ⊆ Out C2×D12240(C2xD12):12D5480,1079
(C2×D12)⋊13D5 = C2×C20⋊D6φ: D5/C5C2 ⊆ Out C2×D12120(C2xD12):13D5480,1089
(C2×D12)⋊14D5 = D2026D6φ: D5/C5C2 ⊆ Out C2×D121204(C2xD12):14D5480,1094
(C2×D12)⋊15D5 = C2×D125D5φ: trivial image240(C2xD12):15D5480,1084

Non-split extensions G=N.Q with N=C2×D12 and Q=D5
extensionφ:Q→Out NdρLabelID
(C2×D12).1D5 = C10.D24φ: D5/C5C2 ⊆ Out C2×D12240(C2xD12).1D5480,43
(C2×D12).2D5 = C2×D12.D5φ: D5/C5C2 ⊆ Out C2×D12240(C2xD12).2D5480,392
(C2×D12).3D5 = C60.69D4φ: D5/C5C2 ⊆ Out C2×D12240(C2xD12).3D5480,449
(C2×D12).4D5 = (C2×D12).D5φ: D5/C5C2 ⊆ Out C2×D12240(C2xD12).4D5480,499
(C2×D12).5D5 = C20.5D12φ: D5/C5C2 ⊆ Out C2×D121204(C2xD12).5D5480,35
(C2×D12).6D5 = D12⋊Dic5φ: D5/C5C2 ⊆ Out C2×D12240(C2xD12).6D5480,42
(C2×D12).7D5 = C2×C20.D6φ: D5/C5C2 ⊆ Out C2×D12240(C2xD12).7D5480,384
(C2×D12).8D5 = C60.89D4φ: D5/C5C2 ⊆ Out C2×D12240(C2xD12).8D5480,446
(C2×D12).9D5 = Dic158D4φ: D5/C5C2 ⊆ Out C2×D12240(C2xD12).9D5480,511
(C2×D12).10D5 = Dic5×D12φ: trivial image240(C2xD12).10D5480,491

׿
×
𝔽