Extensions 1→N→G→Q→1 with N=C2×D20 and Q=C6

Direct product G=N×Q with N=C2×D20 and Q=C6
dρLabelID
C2×C6×D20240C2xC6xD20480,1137

Semidirect products G=N:Q with N=C2×D20 and Q=C6
extensionφ:Q→Out NdρLabelID
(C2×D20)⋊1C6 = C3×C204D4φ: C6/C3C2 ⊆ Out C2×D20240(C2xD20):1C6480,667
(C2×D20)⋊2C6 = C3×C22⋊D20φ: C6/C3C2 ⊆ Out C2×D20120(C2xD20):2C6480,675
(C2×D20)⋊3C6 = C3×D10⋊D4φ: C6/C3C2 ⊆ Out C2×D20240(C2xD20):3C6480,677
(C2×D20)⋊4C6 = C3×C4⋊D20φ: C6/C3C2 ⊆ Out C2×D20240(C2xD20):4C6480,688
(C2×D20)⋊5C6 = C6×D40φ: C6/C3C2 ⊆ Out C2×D20240(C2xD20):5C6480,696
(C2×D20)⋊6C6 = C3×C207D4φ: C6/C3C2 ⊆ Out C2×D20240(C2xD20):6C6480,723
(C2×D20)⋊7C6 = C3×C8⋊D10φ: C6/C3C2 ⊆ Out C2×D201204(C2xD20):7C6480,701
(C2×D20)⋊8C6 = C6×D4⋊D5φ: C6/C3C2 ⊆ Out C2×D20240(C2xD20):8C6480,724
(C2×D20)⋊9C6 = C3×C20⋊D4φ: C6/C3C2 ⊆ Out C2×D20240(C2xD20):9C6480,733
(C2×D20)⋊10C6 = C3×D4⋊D10φ: C6/C3C2 ⊆ Out C2×D201204(C2xD20):10C6480,742
(C2×D20)⋊11C6 = C6×D4×D5φ: C6/C3C2 ⊆ Out C2×D20120(C2xD20):11C6480,1139
(C2×D20)⋊12C6 = C6×Q82D5φ: C6/C3C2 ⊆ Out C2×D20240(C2xD20):12C6480,1143
(C2×D20)⋊13C6 = C3×D48D10φ: C6/C3C2 ⊆ Out C2×D201204(C2xD20):13C6480,1146
(C2×D20)⋊14C6 = C6×C4○D20φ: trivial image240(C2xD20):14C6480,1138

Non-split extensions G=N.Q with N=C2×D20 and Q=C6
extensionφ:Q→Out NdρLabelID
(C2×D20).1C6 = C3×D205C4φ: C6/C3C2 ⊆ Out C2×D20240(C2xD20).1C6480,99
(C2×D20).2C6 = C3×D10.D4φ: C6/C3C2 ⊆ Out C2×D201204(C2xD20).2C6480,279
(C2×D20).3C6 = C3×C4.D20φ: C6/C3C2 ⊆ Out C2×D20240(C2xD20).3C6480,668
(C2×D20).4C6 = C3×D10.13D4φ: C6/C3C2 ⊆ Out C2×D20240(C2xD20).4C6480,687
(C2×D20).5C6 = C6×C40⋊C2φ: C6/C3C2 ⊆ Out C2×D20240(C2xD20).5C6480,695
(C2×D20).6C6 = C3×D206C4φ: C6/C3C2 ⊆ Out C2×D20240(C2xD20).6C6480,87
(C2×D20).7C6 = C3×C20.46D4φ: C6/C3C2 ⊆ Out C2×D201204(C2xD20).7C6480,101
(C2×D20).8C6 = C3×D208C4φ: C6/C3C2 ⊆ Out C2×D20240(C2xD20).8C6480,686
(C2×D20).9C6 = C6×Q8⋊D5φ: C6/C3C2 ⊆ Out C2×D20240(C2xD20).9C6480,734
(C2×D20).10C6 = C3×C20.23D4φ: C6/C3C2 ⊆ Out C2×D20240(C2xD20).10C6480,740
(C2×D20).11C6 = C12×D20φ: trivial image240(C2xD20).11C6480,666

׿
×
𝔽