Extensions 1→N→G→Q→1 with N=C2×C3⋊D4 and Q=D5

Direct product G=N×Q with N=C2×C3⋊D4 and Q=D5
dρLabelID
C2×D5×C3⋊D4120C2xD5xC3:D4480,1122

Semidirect products G=N:Q with N=C2×C3⋊D4 and Q=D5
extensionφ:Q→Out NdρLabelID
(C2×C3⋊D4)⋊1D5 = (C6×D5)⋊D4φ: D5/C5C2 ⊆ Out C2×C3⋊D4240(C2xC3:D4):1D5480,625
(C2×C3⋊D4)⋊2D5 = D307D4φ: D5/C5C2 ⊆ Out C2×C3⋊D4240(C2xC3:D4):2D5480,633
(C2×C3⋊D4)⋊3D5 = Dic154D4φ: D5/C5C2 ⊆ Out C2×C3⋊D4240(C2xC3:D4):3D5480,634
(C2×C3⋊D4)⋊4D5 = (C2×C30)⋊D4φ: D5/C5C2 ⊆ Out C2×C3⋊D4120(C2xC3:D4):4D5480,639
(C2×C3⋊D4)⋊5D5 = (S3×C10)⋊D4φ: D5/C5C2 ⊆ Out C2×C3⋊D4240(C2xC3:D4):5D5480,641
(C2×C3⋊D4)⋊6D5 = (C2×C10)⋊4D12φ: D5/C5C2 ⊆ Out C2×C3⋊D4240(C2xC3:D4):6D5480,642
(C2×C3⋊D4)⋊7D5 = Dic155D4φ: D5/C5C2 ⊆ Out C2×C3⋊D4240(C2xC3:D4):7D5480,643
(C2×C3⋊D4)⋊8D5 = Dic1518D4φ: D5/C5C2 ⊆ Out C2×C3⋊D4240(C2xC3:D4):8D5480,647
(C2×C3⋊D4)⋊9D5 = D3019D4φ: D5/C5C2 ⊆ Out C2×C3⋊D4120(C2xC3:D4):9D5480,649
(C2×C3⋊D4)⋊10D5 = D308D4φ: D5/C5C2 ⊆ Out C2×C3⋊D4120(C2xC3:D4):10D5480,653
(C2×C3⋊D4)⋊11D5 = C2×C30.C23φ: D5/C5C2 ⊆ Out C2×C3⋊D4240(C2xC3:D4):11D5480,1114
(C2×C3⋊D4)⋊12D5 = C2×D10⋊D6φ: D5/C5C2 ⊆ Out C2×C3⋊D4120(C2xC3:D4):12D5480,1124
(C2×C3⋊D4)⋊13D5 = C15⋊2+ 1+4φ: D5/C5C2 ⊆ Out C2×C3⋊D41204(C2xC3:D4):13D5480,1125
(C2×C3⋊D4)⋊14D5 = C2×Dic3.D10φ: trivial image240(C2xC3:D4):14D5480,1116

Non-split extensions G=N.Q with N=C2×C3⋊D4 and Q=D5
extensionφ:Q→Out NdρLabelID
(C2×C3⋊D4).1D5 = C158(C23⋊C4)φ: D5/C5C2 ⊆ Out C2×C3⋊D41204(C2xC3:D4).1D5480,72
(C2×C3⋊D4).2D5 = C23.D5⋊S3φ: D5/C5C2 ⊆ Out C2×C3⋊D4240(C2xC3:D4).2D5480,601
(C2×C3⋊D4).3D5 = C30.(C2×D4)φ: D5/C5C2 ⊆ Out C2×C3⋊D4240(C2xC3:D4).3D5480,615
(C2×C3⋊D4).4D5 = (C2×C10).D12φ: D5/C5C2 ⊆ Out C2×C3⋊D4240(C2xC3:D4).4D5480,619
(C2×C3⋊D4).5D5 = (S3×C10).D4φ: D5/C5C2 ⊆ Out C2×C3⋊D4240(C2xC3:D4).5D5480,631
(C2×C3⋊D4).6D5 = Dic1517D4φ: D5/C5C2 ⊆ Out C2×C3⋊D4240(C2xC3:D4).6D5480,636
(C2×C3⋊D4).7D5 = Dic5×C3⋊D4φ: trivial image240(C2xC3:D4).7D5480,627

׿
×
𝔽