Extensions 1→N→G→Q→1 with N=C2×C3⋊D20 and Q=C2

Direct product G=N×Q with N=C2×C3⋊D20 and Q=C2
dρLabelID
C22×C3⋊D20240C2^2xC3:D20480,1119

Semidirect products G=N:Q with N=C2×C3⋊D20 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×C3⋊D20)⋊1C2 = Dic3⋊D20φ: C2/C1C2 ⊆ Out C2×C3⋊D20240(C2xC3:D20):1C2480,485
(C2×C3⋊D20)⋊2C2 = D10⋊D12φ: C2/C1C2 ⊆ Out C2×C3⋊D20240(C2xC3:D20):2C2480,524
(C2×C3⋊D20)⋊3C2 = C127D20φ: C2/C1C2 ⊆ Out C2×C3⋊D20240(C2xC3:D20):3C2480,526
(C2×C3⋊D20)⋊4C2 = D6⋊D20φ: C2/C1C2 ⊆ Out C2×C3⋊D20240(C2xC3:D20):4C2480,530
(C2×C3⋊D20)⋊5C2 = C12⋊D20φ: C2/C1C2 ⊆ Out C2×C3⋊D20240(C2xC3:D20):5C2480,534
(C2×C3⋊D20)⋊6C2 = D302D4φ: C2/C1C2 ⊆ Out C2×C3⋊D20240(C2xC3:D20):6C2480,535
(C2×C3⋊D20)⋊7C2 = D3012D4φ: C2/C1C2 ⊆ Out C2×C3⋊D20240(C2xC3:D20):7C2480,537
(C2×C3⋊D20)⋊8C2 = C122D20φ: C2/C1C2 ⊆ Out C2×C3⋊D20240(C2xC3:D20):8C2480,541
(C2×C3⋊D20)⋊9C2 = D64D20φ: C2/C1C2 ⊆ Out C2×C3⋊D20120(C2xC3:D20):9C2480,550
(C2×C3⋊D20)⋊10C2 = D305D4φ: C2/C1C2 ⊆ Out C2×C3⋊D20120(C2xC3:D20):10C2480,552
(C2×C3⋊D20)⋊11C2 = D306D4φ: C2/C1C2 ⊆ Out C2×C3⋊D20240(C2xC3:D20):11C2480,609
(C2×C3⋊D20)⋊12C2 = Dic153D4φ: C2/C1C2 ⊆ Out C2×C3⋊D20240(C2xC3:D20):12C2480,626
(C2×C3⋊D20)⋊13C2 = (C2×C6)⋊8D20φ: C2/C1C2 ⊆ Out C2×C3⋊D20120(C2xC3:D20):13C2480,640
(C2×C3⋊D20)⋊14C2 = Dic155D4φ: C2/C1C2 ⊆ Out C2×C3⋊D20240(C2xC3:D20):14C2480,643
(C2×C3⋊D20)⋊15C2 = (C2×C6)⋊D20φ: C2/C1C2 ⊆ Out C2×C3⋊D20240(C2xC3:D20):15C2480,645
(C2×C3⋊D20)⋊16C2 = D3018D4φ: C2/C1C2 ⊆ Out C2×C3⋊D20120(C2xC3:D20):16C2480,648
(C2×C3⋊D20)⋊17C2 = C2×D20⋊S3φ: C2/C1C2 ⊆ Out C2×C3⋊D20240(C2xC3:D20):17C2480,1075
(C2×C3⋊D20)⋊18C2 = C2×C12.28D10φ: C2/C1C2 ⊆ Out C2×C3⋊D20240(C2xC3:D20):18C2480,1085
(C2×C3⋊D20)⋊19C2 = C2×S3×D20φ: C2/C1C2 ⊆ Out C2×C3⋊D20120(C2xC3:D20):19C2480,1088
(C2×C3⋊D20)⋊20C2 = D2014D6φ: C2/C1C2 ⊆ Out C2×C3⋊D201208+(C2xC3:D20):20C2480,1102
(C2×C3⋊D20)⋊21C2 = C2×Dic5.D6φ: C2/C1C2 ⊆ Out C2×C3⋊D20240(C2xC3:D20):21C2480,1113
(C2×C3⋊D20)⋊22C2 = C2×D5×C3⋊D4φ: C2/C1C2 ⊆ Out C2×C3⋊D20120(C2xC3:D20):22C2480,1122
(C2×C3⋊D20)⋊23C2 = C2×D10⋊D6φ: C2/C1C2 ⊆ Out C2×C3⋊D20120(C2xC3:D20):23C2480,1124
(C2×C3⋊D20)⋊24C2 = C2×D6.D10φ: trivial image240(C2xC3:D20):24C2480,1083

Non-split extensions G=N.Q with N=C2×C3⋊D20 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×C3⋊D20).1C2 = Dic3⋊C4⋊D5φ: C2/C1C2 ⊆ Out C2×C3⋊D20240(C2xC3:D20).1C2480,424
(C2×C3⋊D20).2C2 = Dic3.D20φ: C2/C1C2 ⊆ Out C2×C3⋊D20240(C2xC3:D20).2C2480,429
(C2×C3⋊D20).3C2 = D30.34D4φ: C2/C1C2 ⊆ Out C2×C3⋊D20240(C2xC3:D20).3C2480,430
(C2×C3⋊D20).4C2 = D30.D4φ: C2/C1C2 ⊆ Out C2×C3⋊D20240(C2xC3:D20).4C2480,432
(C2×C3⋊D20).5C2 = Dic34D20φ: C2/C1C2 ⊆ Out C2×C3⋊D20240(C2xC3:D20).5C2480,471
(C2×C3⋊D20).6C2 = Dic1513D4φ: C2/C1C2 ⊆ Out C2×C3⋊D20240(C2xC3:D20).6C2480,472
(C2×C3⋊D20).7C2 = D10.16D12φ: C2/C1C2 ⊆ Out C2×C3⋊D20240(C2xC3:D20).7C2480,489
(C2×C3⋊D20).8C2 = C1520(C4×D4)φ: C2/C1C2 ⊆ Out C2×C3⋊D20240(C2xC3:D20).8C2480,520
(C2×C3⋊D20).9C2 = (C2×Dic6)⋊D5φ: C2/C1C2 ⊆ Out C2×C3⋊D20240(C2xC3:D20).9C2480,531
(C2×C3⋊D20).10C2 = D10.4D12φ: C2/C1C2 ⊆ Out C2×C3⋊D201208+(C2xC3:D20).10C2480,249
(C2×C3⋊D20).11C2 = C4×C3⋊D20φ: trivial image240(C2xC3:D20).11C2480,519

׿
×
𝔽