Copied to
clipboard

G = D305D4order 480 = 25·3·5

5th semidirect product of D30 and D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D305D4, D65D20, D105D12, D6⋊C48D5, (C6×D5)⋊5D4, (C2×C20)⋊2D6, C153C22≀C2, (C2×D60)⋊3C2, (S3×C10)⋊5D4, (C2×C12)⋊2D10, C6.27(D4×D5), C51(D6⋊D4), (C2×C60)⋊1C22, (C2×Dic5)⋊2D6, C6.28(C2×D20), C2.29(D5×D12), C30.70(C2×D4), C2.29(S3×D20), C10.27(S3×D4), D10⋊C48S3, C31(C22⋊D20), (C2×Dic3)⋊2D10, C10.29(C2×D12), D304C424C2, (C6×Dic5)⋊4C22, (C22×D5).60D6, (C2×C30).166C23, (C10×Dic3)⋊4C22, (C22×S3).51D10, (C22×D15)⋊5C22, C2.19(D10⋊D6), (C2×C4)⋊3(S3×D5), (C5×D6⋊C4)⋊8C2, (C22×S3×D5)⋊3C2, (C2×C3⋊D20)⋊10C2, (C2×C5⋊D12)⋊10C2, (C3×D10⋊C4)⋊8C2, (D5×C2×C6).43C22, C22.214(C2×S3×D5), (S3×C2×C10).43C22, (C2×C6).178(C22×D5), (C2×C10).178(C22×S3), SmallGroup(480,552)

Series: Derived Chief Lower central Upper central

C1C2×C30 — D305D4
C1C5C15C30C2×C30D5×C2×C6C22×S3×D5 — D305D4
C15C2×C30 — D305D4
C1C22C2×C4

Generators and relations for D305D4
 G = < a,b,c,d | a6=b2=c20=d2=1, bab=dad=a-1, ac=ca, cbc-1=a3b, dbd=ab, dcd=c-1 >

Subgroups: 1964 in 260 conjugacy classes, 54 normal (44 characteristic)
C1, C2, C2, C3, C4, C22, C22, C5, S3, C6, C6, C2×C4, C2×C4, D4, C23, D5, C10, C10, Dic3, C12, D6, D6, C2×C6, C2×C6, C15, C22⋊C4, C2×D4, C24, Dic5, C20, D10, D10, C2×C10, C2×C10, D12, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C22×S3, C22×S3, C22×C6, C5×S3, C3×D5, D15, C30, C22≀C2, D20, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C22×D5, C22×D5, C22×C10, D6⋊C4, D6⋊C4, C3×C22⋊C4, C2×D12, C2×C3⋊D4, S3×C23, C5×Dic3, C3×Dic5, C60, S3×D5, C6×D5, C6×D5, S3×C10, S3×C10, D30, D30, C2×C30, D10⋊C4, D10⋊C4, C5×C22⋊C4, C2×D20, C2×C5⋊D4, C23×D5, D6⋊D4, C3⋊D20, C5⋊D12, C6×Dic5, C10×Dic3, D60, C2×C60, C2×S3×D5, D5×C2×C6, S3×C2×C10, C22×D15, C22⋊D20, D304C4, C3×D10⋊C4, C5×D6⋊C4, C2×C3⋊D20, C2×C5⋊D12, C2×D60, C22×S3×D5, D305D4
Quotients: C1, C2, C22, S3, D4, C23, D5, D6, C2×D4, D10, D12, C22×S3, C22≀C2, D20, C22×D5, C2×D12, S3×D4, S3×D5, C2×D20, D4×D5, D6⋊D4, C2×S3×D5, C22⋊D20, D5×D12, S3×D20, D10⋊D6, D305D4

Smallest permutation representation of D305D4
On 120 points
Generators in S120
(1 39 114 44 77 86)(2 40 115 45 78 87)(3 21 116 46 79 88)(4 22 117 47 80 89)(5 23 118 48 61 90)(6 24 119 49 62 91)(7 25 120 50 63 92)(8 26 101 51 64 93)(9 27 102 52 65 94)(10 28 103 53 66 95)(11 29 104 54 67 96)(12 30 105 55 68 97)(13 31 106 56 69 98)(14 32 107 57 70 99)(15 33 108 58 71 100)(16 34 109 59 72 81)(17 35 110 60 73 82)(18 36 111 41 74 83)(19 37 112 42 75 84)(20 38 113 43 76 85)
(1 104)(2 97)(3 106)(4 99)(5 108)(6 81)(7 110)(8 83)(9 112)(10 85)(11 114)(12 87)(13 116)(14 89)(15 118)(16 91)(17 120)(18 93)(19 102)(20 95)(21 31)(22 70)(23 33)(24 72)(25 35)(26 74)(27 37)(28 76)(29 39)(30 78)(32 80)(34 62)(36 64)(38 66)(40 68)(41 101)(42 94)(43 103)(44 96)(45 105)(46 98)(47 107)(48 100)(49 109)(50 82)(51 111)(52 84)(53 113)(54 86)(55 115)(56 88)(57 117)(58 90)(59 119)(60 92)(61 71)(63 73)(65 75)(67 77)(69 79)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 10)(2 9)(3 8)(4 7)(5 6)(11 20)(12 19)(13 18)(14 17)(15 16)(21 93)(22 92)(23 91)(24 90)(25 89)(26 88)(27 87)(28 86)(29 85)(30 84)(31 83)(32 82)(33 81)(34 100)(35 99)(36 98)(37 97)(38 96)(39 95)(40 94)(41 56)(42 55)(43 54)(44 53)(45 52)(46 51)(47 50)(48 49)(57 60)(58 59)(61 119)(62 118)(63 117)(64 116)(65 115)(66 114)(67 113)(68 112)(69 111)(70 110)(71 109)(72 108)(73 107)(74 106)(75 105)(76 104)(77 103)(78 102)(79 101)(80 120)

G:=sub<Sym(120)| (1,39,114,44,77,86)(2,40,115,45,78,87)(3,21,116,46,79,88)(4,22,117,47,80,89)(5,23,118,48,61,90)(6,24,119,49,62,91)(7,25,120,50,63,92)(8,26,101,51,64,93)(9,27,102,52,65,94)(10,28,103,53,66,95)(11,29,104,54,67,96)(12,30,105,55,68,97)(13,31,106,56,69,98)(14,32,107,57,70,99)(15,33,108,58,71,100)(16,34,109,59,72,81)(17,35,110,60,73,82)(18,36,111,41,74,83)(19,37,112,42,75,84)(20,38,113,43,76,85), (1,104)(2,97)(3,106)(4,99)(5,108)(6,81)(7,110)(8,83)(9,112)(10,85)(11,114)(12,87)(13,116)(14,89)(15,118)(16,91)(17,120)(18,93)(19,102)(20,95)(21,31)(22,70)(23,33)(24,72)(25,35)(26,74)(27,37)(28,76)(29,39)(30,78)(32,80)(34,62)(36,64)(38,66)(40,68)(41,101)(42,94)(43,103)(44,96)(45,105)(46,98)(47,107)(48,100)(49,109)(50,82)(51,111)(52,84)(53,113)(54,86)(55,115)(56,88)(57,117)(58,90)(59,119)(60,92)(61,71)(63,73)(65,75)(67,77)(69,79), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,10)(2,9)(3,8)(4,7)(5,6)(11,20)(12,19)(13,18)(14,17)(15,16)(21,93)(22,92)(23,91)(24,90)(25,89)(26,88)(27,87)(28,86)(29,85)(30,84)(31,83)(32,82)(33,81)(34,100)(35,99)(36,98)(37,97)(38,96)(39,95)(40,94)(41,56)(42,55)(43,54)(44,53)(45,52)(46,51)(47,50)(48,49)(57,60)(58,59)(61,119)(62,118)(63,117)(64,116)(65,115)(66,114)(67,113)(68,112)(69,111)(70,110)(71,109)(72,108)(73,107)(74,106)(75,105)(76,104)(77,103)(78,102)(79,101)(80,120)>;

G:=Group( (1,39,114,44,77,86)(2,40,115,45,78,87)(3,21,116,46,79,88)(4,22,117,47,80,89)(5,23,118,48,61,90)(6,24,119,49,62,91)(7,25,120,50,63,92)(8,26,101,51,64,93)(9,27,102,52,65,94)(10,28,103,53,66,95)(11,29,104,54,67,96)(12,30,105,55,68,97)(13,31,106,56,69,98)(14,32,107,57,70,99)(15,33,108,58,71,100)(16,34,109,59,72,81)(17,35,110,60,73,82)(18,36,111,41,74,83)(19,37,112,42,75,84)(20,38,113,43,76,85), (1,104)(2,97)(3,106)(4,99)(5,108)(6,81)(7,110)(8,83)(9,112)(10,85)(11,114)(12,87)(13,116)(14,89)(15,118)(16,91)(17,120)(18,93)(19,102)(20,95)(21,31)(22,70)(23,33)(24,72)(25,35)(26,74)(27,37)(28,76)(29,39)(30,78)(32,80)(34,62)(36,64)(38,66)(40,68)(41,101)(42,94)(43,103)(44,96)(45,105)(46,98)(47,107)(48,100)(49,109)(50,82)(51,111)(52,84)(53,113)(54,86)(55,115)(56,88)(57,117)(58,90)(59,119)(60,92)(61,71)(63,73)(65,75)(67,77)(69,79), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,10)(2,9)(3,8)(4,7)(5,6)(11,20)(12,19)(13,18)(14,17)(15,16)(21,93)(22,92)(23,91)(24,90)(25,89)(26,88)(27,87)(28,86)(29,85)(30,84)(31,83)(32,82)(33,81)(34,100)(35,99)(36,98)(37,97)(38,96)(39,95)(40,94)(41,56)(42,55)(43,54)(44,53)(45,52)(46,51)(47,50)(48,49)(57,60)(58,59)(61,119)(62,118)(63,117)(64,116)(65,115)(66,114)(67,113)(68,112)(69,111)(70,110)(71,109)(72,108)(73,107)(74,106)(75,105)(76,104)(77,103)(78,102)(79,101)(80,120) );

G=PermutationGroup([[(1,39,114,44,77,86),(2,40,115,45,78,87),(3,21,116,46,79,88),(4,22,117,47,80,89),(5,23,118,48,61,90),(6,24,119,49,62,91),(7,25,120,50,63,92),(8,26,101,51,64,93),(9,27,102,52,65,94),(10,28,103,53,66,95),(11,29,104,54,67,96),(12,30,105,55,68,97),(13,31,106,56,69,98),(14,32,107,57,70,99),(15,33,108,58,71,100),(16,34,109,59,72,81),(17,35,110,60,73,82),(18,36,111,41,74,83),(19,37,112,42,75,84),(20,38,113,43,76,85)], [(1,104),(2,97),(3,106),(4,99),(5,108),(6,81),(7,110),(8,83),(9,112),(10,85),(11,114),(12,87),(13,116),(14,89),(15,118),(16,91),(17,120),(18,93),(19,102),(20,95),(21,31),(22,70),(23,33),(24,72),(25,35),(26,74),(27,37),(28,76),(29,39),(30,78),(32,80),(34,62),(36,64),(38,66),(40,68),(41,101),(42,94),(43,103),(44,96),(45,105),(46,98),(47,107),(48,100),(49,109),(50,82),(51,111),(52,84),(53,113),(54,86),(55,115),(56,88),(57,117),(58,90),(59,119),(60,92),(61,71),(63,73),(65,75),(67,77),(69,79)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,10),(2,9),(3,8),(4,7),(5,6),(11,20),(12,19),(13,18),(14,17),(15,16),(21,93),(22,92),(23,91),(24,90),(25,89),(26,88),(27,87),(28,86),(29,85),(30,84),(31,83),(32,82),(33,81),(34,100),(35,99),(36,98),(37,97),(38,96),(39,95),(40,94),(41,56),(42,55),(43,54),(44,53),(45,52),(46,51),(47,50),(48,49),(57,60),(58,59),(61,119),(62,118),(63,117),(64,116),(65,115),(66,114),(67,113),(68,112),(69,111),(70,110),(71,109),(72,108),(73,107),(74,106),(75,105),(76,104),(77,103),(78,102),(79,101),(80,120)]])

60 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J 3 4A4B4C5A5B6A6B6C6D6E10A···10F10G10H10I10J12A12B12C12D15A15B20A20B20C20D20E20F20G20H30A···30F60A···60H
order122222222223444556666610···1010101010121212121515202020202020202030···3060···60
size11116610103030602412202222220202···212121212442020444444121212124···44···4

60 irreducible representations

dim1111111122222222222224444444
type++++++++++++++++++++++++++++
imageC1C2C2C2C2C2C2C2S3D4D4D4D5D6D6D6D10D10D10D12D20S3×D4S3×D5D4×D5C2×S3×D5D5×D12S3×D20D10⋊D6
kernelD305D4D304C4C3×D10⋊C4C5×D6⋊C4C2×C3⋊D20C2×C5⋊D12C2×D60C22×S3×D5D10⋊C4C6×D5S3×C10D30D6⋊C4C2×Dic5C2×C20C22×D5C2×Dic3C2×C12C22×S3D10D6C10C2×C4C6C22C2C2C2
# reps1111111112222111222482242444

Matrix representation of D305D4 in GL6(𝔽61)

100000
010000
00606000
001000
0000600
0000060
,
6000000
0600000
00606000
000100
0000600
0000481
,
7320000
2920000
0060000
0006000
00005320
0000128
,
7320000
29540000
0060000
001100
0000841
00005553

G:=sub<GL(6,GF(61))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,60,1,0,0,0,0,60,0,0,0,0,0,0,0,60,0,0,0,0,0,0,60],[60,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,60,1,0,0,0,0,0,0,60,48,0,0,0,0,0,1],[7,29,0,0,0,0,32,2,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,0,53,12,0,0,0,0,20,8],[7,29,0,0,0,0,32,54,0,0,0,0,0,0,60,1,0,0,0,0,0,1,0,0,0,0,0,0,8,55,0,0,0,0,41,53] >;

D305D4 in GAP, Magma, Sage, TeX

D_{30}\rtimes_5D_4
% in TeX

G:=Group("D30:5D4");
// GroupNames label

G:=SmallGroup(480,552);
// by ID

G=gap.SmallGroup(480,552);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,254,219,142,1356,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^2=c^20=d^2=1,b*a*b=d*a*d=a^-1,a*c=c*a,c*b*c^-1=a^3*b,d*b*d=a*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽