Copied to
clipboard

G = (C2×C6)⋊8D20order 480 = 25·3·5

2nd semidirect product of C2×C6 and D20 acting via D20/D10=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: (C2×C30)⋊5D4, (C2×C6)⋊8D20, C155C22≀C2, (C6×D5)⋊17D4, C6.162(D4×D5), C6.69(C2×D20), (C23×D5)⋊5S3, D108(C3⋊D4), C35(C22⋊D20), C51(C244S3), (C2×Dic3)⋊4D10, C30.244(C2×D4), C23.44(S3×D5), C6.D413D5, C223(C3⋊D20), (C22×D5).95D6, (C22×C10).58D6, (C22×C6).94D10, D10⋊Dic334C2, (C2×C30).206C23, (C10×Dic3)⋊8C22, (C22×D15)⋊6C22, (C2×Dic15)⋊12C22, (C22×C30).68C22, (D5×C22×C6)⋊2C2, C2.42(D5×C3⋊D4), (C2×C3⋊D20)⋊13C2, (C2×C157D4)⋊16C2, (C2×C10)⋊6(C3⋊D4), C10.66(C2×C3⋊D4), C2.24(C2×C3⋊D20), C22.235(C2×S3×D5), (D5×C2×C6).113C22, (C5×C6.D4)⋊15C2, (C2×C6).218(C22×D5), (C2×C10).218(C22×S3), SmallGroup(480,640)

Series: Derived Chief Lower central Upper central

C1C2×C30 — (C2×C6)⋊8D20
C1C5C15C30C2×C30D5×C2×C6C2×C3⋊D20 — (C2×C6)⋊8D20
C15C2×C30 — (C2×C6)⋊8D20
C1C22C23

Generators and relations for (C2×C6)⋊8D20
 G = < a,b,c,d | a2=b6=c20=d2=1, ab=ba, cac-1=dad=ab3, cbc-1=dbd=b-1, dcd=c-1 >

Subgroups: 1500 in 260 conjugacy classes, 60 normal (24 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, C5, S3, C6, C6, C6, C2×C4, D4, C23, C23, D5, C10, C10, C10, Dic3, D6, C2×C6, C2×C6, C2×C6, C15, C22⋊C4, C2×D4, C24, Dic5, C20, D10, D10, C2×C10, C2×C10, C2×C10, C2×Dic3, C2×Dic3, C3⋊D4, C22×S3, C22×C6, C22×C6, C3×D5, D15, C30, C30, C30, C22≀C2, D20, C2×Dic5, C5⋊D4, C2×C20, C22×D5, C22×D5, C22×C10, C6.D4, C6.D4, C2×C3⋊D4, C23×C6, C5×Dic3, Dic15, C6×D5, C6×D5, D30, C2×C30, C2×C30, C2×C30, D10⋊C4, C5×C22⋊C4, C2×D20, C2×C5⋊D4, C23×D5, C244S3, C3⋊D20, C10×Dic3, C2×Dic15, C157D4, D5×C2×C6, D5×C2×C6, C22×D15, C22×C30, C22⋊D20, D10⋊Dic3, C5×C6.D4, C2×C3⋊D20, C2×C157D4, D5×C22×C6, (C2×C6)⋊8D20
Quotients: C1, C2, C22, S3, D4, C23, D5, D6, C2×D4, D10, C3⋊D4, C22×S3, C22≀C2, D20, C22×D5, C2×C3⋊D4, S3×D5, C2×D20, D4×D5, C244S3, C3⋊D20, C2×S3×D5, C22⋊D20, C2×C3⋊D20, D5×C3⋊D4, (C2×C6)⋊8D20

Smallest permutation representation of (C2×C6)⋊8D20
On 120 points
Generators in S120
(1 11)(2 45)(3 13)(4 47)(5 15)(6 49)(7 17)(8 51)(9 19)(10 53)(12 55)(14 57)(16 59)(18 41)(20 43)(21 31)(22 109)(23 33)(24 111)(25 35)(26 113)(27 37)(28 115)(29 39)(30 117)(32 119)(34 101)(36 103)(38 105)(40 107)(42 52)(44 54)(46 56)(48 58)(50 60)(61 71)(62 100)(63 73)(64 82)(65 75)(66 84)(67 77)(68 86)(69 79)(70 88)(72 90)(74 92)(76 94)(78 96)(80 98)(81 91)(83 93)(85 95)(87 97)(89 99)(102 112)(104 114)(106 116)(108 118)(110 120)
(1 75 106 54 83 29)(2 30 84 55 107 76)(3 77 108 56 85 31)(4 32 86 57 109 78)(5 79 110 58 87 33)(6 34 88 59 111 80)(7 61 112 60 89 35)(8 36 90 41 113 62)(9 63 114 42 91 37)(10 38 92 43 115 64)(11 65 116 44 93 39)(12 40 94 45 117 66)(13 67 118 46 95 21)(14 22 96 47 119 68)(15 69 120 48 97 23)(16 24 98 49 101 70)(17 71 102 50 99 25)(18 26 100 51 103 72)(19 73 104 52 81 27)(20 28 82 53 105 74)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 53)(2 52)(3 51)(4 50)(5 49)(6 48)(7 47)(8 46)(9 45)(10 44)(11 43)(12 42)(13 41)(14 60)(15 59)(16 58)(17 57)(18 56)(19 55)(20 54)(21 113)(22 112)(23 111)(24 110)(25 109)(26 108)(27 107)(28 106)(29 105)(30 104)(31 103)(32 102)(33 101)(34 120)(35 119)(36 118)(37 117)(38 116)(39 115)(40 114)(61 96)(62 95)(63 94)(64 93)(65 92)(66 91)(67 90)(68 89)(69 88)(70 87)(71 86)(72 85)(73 84)(74 83)(75 82)(76 81)(77 100)(78 99)(79 98)(80 97)

G:=sub<Sym(120)| (1,11)(2,45)(3,13)(4,47)(5,15)(6,49)(7,17)(8,51)(9,19)(10,53)(12,55)(14,57)(16,59)(18,41)(20,43)(21,31)(22,109)(23,33)(24,111)(25,35)(26,113)(27,37)(28,115)(29,39)(30,117)(32,119)(34,101)(36,103)(38,105)(40,107)(42,52)(44,54)(46,56)(48,58)(50,60)(61,71)(62,100)(63,73)(64,82)(65,75)(66,84)(67,77)(68,86)(69,79)(70,88)(72,90)(74,92)(76,94)(78,96)(80,98)(81,91)(83,93)(85,95)(87,97)(89,99)(102,112)(104,114)(106,116)(108,118)(110,120), (1,75,106,54,83,29)(2,30,84,55,107,76)(3,77,108,56,85,31)(4,32,86,57,109,78)(5,79,110,58,87,33)(6,34,88,59,111,80)(7,61,112,60,89,35)(8,36,90,41,113,62)(9,63,114,42,91,37)(10,38,92,43,115,64)(11,65,116,44,93,39)(12,40,94,45,117,66)(13,67,118,46,95,21)(14,22,96,47,119,68)(15,69,120,48,97,23)(16,24,98,49,101,70)(17,71,102,50,99,25)(18,26,100,51,103,72)(19,73,104,52,81,27)(20,28,82,53,105,74), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,53)(2,52)(3,51)(4,50)(5,49)(6,48)(7,47)(8,46)(9,45)(10,44)(11,43)(12,42)(13,41)(14,60)(15,59)(16,58)(17,57)(18,56)(19,55)(20,54)(21,113)(22,112)(23,111)(24,110)(25,109)(26,108)(27,107)(28,106)(29,105)(30,104)(31,103)(32,102)(33,101)(34,120)(35,119)(36,118)(37,117)(38,116)(39,115)(40,114)(61,96)(62,95)(63,94)(64,93)(65,92)(66,91)(67,90)(68,89)(69,88)(70,87)(71,86)(72,85)(73,84)(74,83)(75,82)(76,81)(77,100)(78,99)(79,98)(80,97)>;

G:=Group( (1,11)(2,45)(3,13)(4,47)(5,15)(6,49)(7,17)(8,51)(9,19)(10,53)(12,55)(14,57)(16,59)(18,41)(20,43)(21,31)(22,109)(23,33)(24,111)(25,35)(26,113)(27,37)(28,115)(29,39)(30,117)(32,119)(34,101)(36,103)(38,105)(40,107)(42,52)(44,54)(46,56)(48,58)(50,60)(61,71)(62,100)(63,73)(64,82)(65,75)(66,84)(67,77)(68,86)(69,79)(70,88)(72,90)(74,92)(76,94)(78,96)(80,98)(81,91)(83,93)(85,95)(87,97)(89,99)(102,112)(104,114)(106,116)(108,118)(110,120), (1,75,106,54,83,29)(2,30,84,55,107,76)(3,77,108,56,85,31)(4,32,86,57,109,78)(5,79,110,58,87,33)(6,34,88,59,111,80)(7,61,112,60,89,35)(8,36,90,41,113,62)(9,63,114,42,91,37)(10,38,92,43,115,64)(11,65,116,44,93,39)(12,40,94,45,117,66)(13,67,118,46,95,21)(14,22,96,47,119,68)(15,69,120,48,97,23)(16,24,98,49,101,70)(17,71,102,50,99,25)(18,26,100,51,103,72)(19,73,104,52,81,27)(20,28,82,53,105,74), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,53)(2,52)(3,51)(4,50)(5,49)(6,48)(7,47)(8,46)(9,45)(10,44)(11,43)(12,42)(13,41)(14,60)(15,59)(16,58)(17,57)(18,56)(19,55)(20,54)(21,113)(22,112)(23,111)(24,110)(25,109)(26,108)(27,107)(28,106)(29,105)(30,104)(31,103)(32,102)(33,101)(34,120)(35,119)(36,118)(37,117)(38,116)(39,115)(40,114)(61,96)(62,95)(63,94)(64,93)(65,92)(66,91)(67,90)(68,89)(69,88)(70,87)(71,86)(72,85)(73,84)(74,83)(75,82)(76,81)(77,100)(78,99)(79,98)(80,97) );

G=PermutationGroup([[(1,11),(2,45),(3,13),(4,47),(5,15),(6,49),(7,17),(8,51),(9,19),(10,53),(12,55),(14,57),(16,59),(18,41),(20,43),(21,31),(22,109),(23,33),(24,111),(25,35),(26,113),(27,37),(28,115),(29,39),(30,117),(32,119),(34,101),(36,103),(38,105),(40,107),(42,52),(44,54),(46,56),(48,58),(50,60),(61,71),(62,100),(63,73),(64,82),(65,75),(66,84),(67,77),(68,86),(69,79),(70,88),(72,90),(74,92),(76,94),(78,96),(80,98),(81,91),(83,93),(85,95),(87,97),(89,99),(102,112),(104,114),(106,116),(108,118),(110,120)], [(1,75,106,54,83,29),(2,30,84,55,107,76),(3,77,108,56,85,31),(4,32,86,57,109,78),(5,79,110,58,87,33),(6,34,88,59,111,80),(7,61,112,60,89,35),(8,36,90,41,113,62),(9,63,114,42,91,37),(10,38,92,43,115,64),(11,65,116,44,93,39),(12,40,94,45,117,66),(13,67,118,46,95,21),(14,22,96,47,119,68),(15,69,120,48,97,23),(16,24,98,49,101,70),(17,71,102,50,99,25),(18,26,100,51,103,72),(19,73,104,52,81,27),(20,28,82,53,105,74)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,53),(2,52),(3,51),(4,50),(5,49),(6,48),(7,47),(8,46),(9,45),(10,44),(11,43),(12,42),(13,41),(14,60),(15,59),(16,58),(17,57),(18,56),(19,55),(20,54),(21,113),(22,112),(23,111),(24,110),(25,109),(26,108),(27,107),(28,106),(29,105),(30,104),(31,103),(32,102),(33,101),(34,120),(35,119),(36,118),(37,117),(38,116),(39,115),(40,114),(61,96),(62,95),(63,94),(64,93),(65,92),(66,91),(67,90),(68,89),(69,88),(70,87),(71,86),(72,85),(73,84),(74,83),(75,82),(76,81),(77,100),(78,99),(79,98),(80,97)]])

66 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J 3 4A4B4C5A5B6A···6G6H···6O10A···10F10G10H10I10J15A15B20A···20H30A···30N
order122222222223444556···66···610···1010101010151520···2030···30
size11112210101010602121260222···210···102···244444412···124···4

66 irreducible representations

dim1111112222222222244444
type+++++++++++++++++++
imageC1C2C2C2C2C2S3D4D4D5D6D6D10D10C3⋊D4C3⋊D4D20S3×D5D4×D5C3⋊D20C2×S3×D5D5×C3⋊D4
kernel(C2×C6)⋊8D20D10⋊Dic3C5×C6.D4C2×C3⋊D20C2×C157D4D5×C22×C6C23×D5C6×D5C2×C30C6.D4C22×D5C22×C10C2×Dic3C22×C6D10C2×C10C2×C6C23C6C22C22C2
# reps1212111422214284824428

Matrix representation of (C2×C6)⋊8D20 in GL4(𝔽61) generated by

60000
06000
006029
0001
,
1000
0100
00145
00048
,
73200
29200
00553
0086
,
73200
295400
005549
0086
G:=sub<GL(4,GF(61))| [60,0,0,0,0,60,0,0,0,0,60,0,0,0,29,1],[1,0,0,0,0,1,0,0,0,0,14,0,0,0,5,48],[7,29,0,0,32,2,0,0,0,0,55,8,0,0,3,6],[7,29,0,0,32,54,0,0,0,0,55,8,0,0,49,6] >;

(C2×C6)⋊8D20 in GAP, Magma, Sage, TeX

(C_2\times C_6)\rtimes_8D_{20}
% in TeX

G:=Group("(C2xC6):8D20");
// GroupNames label

G:=SmallGroup(480,640);
// by ID

G=gap.SmallGroup(480,640);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,141,64,219,1356,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^6=c^20=d^2=1,a*b=b*a,c*a*c^-1=d*a*d=a*b^3,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽