Extensions 1→N→G→Q→1 with N=C5xQ8:2S3 and Q=C2

Direct product G=NxQ with N=C5xQ8:2S3 and Q=C2
dρLabelID
C10xQ8:2S3240C10xQ8:2S3480,820

Semidirect products G=N:Q with N=C5xQ8:2S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5xQ8:2S3):1C2 = D5xQ8:2S3φ: C2/C1C2 ⊆ Out C5xQ8:2S31208+(C5xQ8:2S3):1C2480,577
(C5xQ8:2S3):2C2 = D20:D6φ: C2/C1C2 ⊆ Out C5xQ8:2S31208+(C5xQ8:2S3):2C2480,578
(C5xQ8:2S3):3C2 = D15:SD16φ: C2/C1C2 ⊆ Out C5xQ8:2S31208-(C5xQ8:2S3):3C2480,581
(C5xQ8:2S3):4C2 = D60:C22φ: C2/C1C2 ⊆ Out C5xQ8:2S31208+(C5xQ8:2S3):4C2480,582
(C5xQ8:2S3):5C2 = D12.27D10φ: C2/C1C2 ⊆ Out C5xQ8:2S32408-(C5xQ8:2S3):5C2480,589
(C5xQ8:2S3):6C2 = D20.14D6φ: C2/C1C2 ⊆ Out C5xQ8:2S32408-(C5xQ8:2S3):6C2480,590
(C5xQ8:2S3):7C2 = D12.D10φ: C2/C1C2 ⊆ Out C5xQ8:2S32408+(C5xQ8:2S3):7C2480,599
(C5xQ8:2S3):8C2 = D30.44D4φ: C2/C1C2 ⊆ Out C5xQ8:2S32408-(C5xQ8:2S3):8C2480,600
(C5xQ8:2S3):9C2 = C5xS3xSD16φ: C2/C1C2 ⊆ Out C5xQ8:2S31204(C5xQ8:2S3):9C2480,792
(C5xQ8:2S3):10C2 = C5xQ8:3D6φ: C2/C1C2 ⊆ Out C5xQ8:2S31204(C5xQ8:2S3):10C2480,793
(C5xQ8:2S3):11C2 = C5xQ16:S3φ: C2/C1C2 ⊆ Out C5xQ8:2S32404(C5xQ8:2S3):11C2480,797
(C5xQ8:2S3):12C2 = C5xD24:C2φ: C2/C1C2 ⊆ Out C5xQ8:2S32404(C5xQ8:2S3):12C2480,798
(C5xQ8:2S3):13C2 = C5xQ8.11D6φ: C2/C1C2 ⊆ Out C5xQ8:2S32404(C5xQ8:2S3):13C2480,821
(C5xQ8:2S3):14C2 = C5xD4:D6φ: C2/C1C2 ⊆ Out C5xQ8:2S31204(C5xQ8:2S3):14C2480,828
(C5xQ8:2S3):15C2 = C5xQ8.13D6φ: trivial image2404(C5xQ8:2S3):15C2480,829


׿
x
:
Z
F
o
wr
Q
<