# Extensions 1→N→G→Q→1 with N=C8×D15 and Q=C2

Direct product G=N×Q with N=C8×D15 and Q=C2
dρLabelID
C2×C8×D15240C2xC8xD15480,864

Semidirect products G=N:Q with N=C8×D15 and Q=C2
extensionφ:Q→Out NdρLabelID
(C8×D15)⋊1C2 = D8×D15φ: C2/C1C2 ⊆ Out C8×D151204+(C8xD15):1C2480,875
(C8×D15)⋊2C2 = D83D15φ: C2/C1C2 ⊆ Out C8×D152404-(C8xD15):2C2480,877
(C8×D15)⋊3C2 = D1208C2φ: C2/C1C2 ⊆ Out C8×D152404+(C8xD15):3C2480,884
(C8×D15)⋊4C2 = SD16×D15φ: C2/C1C2 ⊆ Out C8×D151204(C8xD15):4C2480,878
(C8×D15)⋊5C2 = D4.5D30φ: C2/C1C2 ⊆ Out C8×D152404(C8xD15):5C2480,881
(C8×D15)⋊6C2 = C405D6φ: C2/C1C2 ⊆ Out C8×D151204(C8xD15):6C2480,332
(C8×D15)⋊7C2 = D405S3φ: C2/C1C2 ⊆ Out C8×D152404(C8xD15):7C2480,353
(C8×D15)⋊8C2 = D245D5φ: C2/C1C2 ⊆ Out C8×D152404(C8xD15):8C2480,355
(C8×D15)⋊9C2 = D60.6C4φ: C2/C1C2 ⊆ Out C8×D152402(C8xD15):9C2480,866
(C8×D15)⋊10C2 = C4014D6φ: C2/C1C2 ⊆ Out C8×D151204(C8xD15):10C2480,331
(C8×D15)⋊11C2 = Dic6.D10φ: C2/C1C2 ⊆ Out C8×D152404(C8xD15):11C2480,352
(C8×D15)⋊12C2 = S3×C8×D5φ: C2/C1C2 ⊆ Out C8×D151204(C8xD15):12C2480,319
(C8×D15)⋊13C2 = C40⋊D6φ: C2/C1C2 ⊆ Out C8×D151204(C8xD15):13C2480,322
(C8×D15)⋊14C2 = C40.54D6φ: C2/C1C2 ⊆ Out C8×D152404(C8xD15):14C2480,341
(C8×D15)⋊15C2 = C40.35D6φ: C2/C1C2 ⊆ Out C8×D152404(C8xD15):15C2480,344
(C8×D15)⋊16C2 = M4(2)×D15φ: C2/C1C2 ⊆ Out C8×D151204(C8xD15):16C2480,871
(C8×D15)⋊17C2 = D60.3C4φ: C2/C1C2 ⊆ Out C8×D152404(C8xD15):17C2480,872

Non-split extensions G=N.Q with N=C8×D15 and Q=C2
extensionφ:Q→Out NdρLabelID
(C8×D15).1C2 = Q16×D15φ: C2/C1C2 ⊆ Out C8×D152404-(C8xD15).1C2480,882
(C8×D15).2C2 = Dic10.D6φ: C2/C1C2 ⊆ Out C8×D152404(C8xD15).2C2480,340
(C8×D15).3C2 = C80⋊S3φ: C2/C1C2 ⊆ Out C8×D152402(C8xD15).3C2480,158
(C8×D15).4C2 = D152C16φ: C2/C1C2 ⊆ Out C8×D152404(C8xD15).4C2480,9
(C8×D15).5C2 = D30.5C8φ: C2/C1C2 ⊆ Out C8×D152404(C8xD15).5C2480,12
(C8×D15).6C2 = C16×D15φ: trivial image2402(C8xD15).6C2480,157

׿
×
𝔽