Copied to
clipboard

G = SD16×D15order 480 = 25·3·5

Direct product of SD16 and D15

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: SD16×D15, C85D30, C4015D6, Q82D30, C2415D10, D4.2D30, D30.49D4, C12010C22, C60.67C23, Dic15.23D4, D60.21C22, Dic3013C22, (C5×Q8)⋊8D6, C35(D5×SD16), C55(S3×SD16), (C8×D15)⋊4C2, (C3×Q8)⋊5D10, (Q8×D15)⋊8C2, C24⋊D57C2, (C5×SD16)⋊3S3, (C3×SD16)⋊3D5, (C5×D4).14D6, (D4×D15).2C2, C2.18(D4×D15), C6.111(D4×D5), C1519(C2×SD16), D4.D1511C2, Q82D159C2, (C15×SD16)⋊3C2, (C3×D4).14D10, C30.318(C2×D4), C10.113(S3×D4), C4.4(C22×D15), C153C828C22, (Q8×C15)⋊12C22, C20.105(C22×S3), (D4×C15).21C22, (C4×D15).44C22, C12.105(C22×D5), SmallGroup(480,878)

Series: Derived Chief Lower central Upper central

C1C60 — SD16×D15
C1C5C15C30C60C4×D15D4×D15 — SD16×D15
C15C30C60 — SD16×D15
C1C2C4SD16

Generators and relations for SD16×D15
 G = < a,b,c,d | a8=b2=c15=d2=1, bab=a3, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 996 in 136 conjugacy classes, 43 normal (41 characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, S3, C6, C6, C8, C8, C2×C4, D4, D4, Q8, Q8, C23, D5, C10, C10, Dic3, C12, C12, D6, C2×C6, C15, C2×C8, SD16, SD16, C2×D4, C2×Q8, Dic5, C20, C20, D10, C2×C10, C3⋊C8, C24, Dic6, C4×S3, D12, C3⋊D4, C3×D4, C3×Q8, C22×S3, D15, D15, C30, C30, C2×SD16, C52C8, C40, Dic10, C4×D5, D20, C5⋊D4, C5×D4, C5×Q8, C22×D5, S3×C8, C24⋊C2, D4.S3, Q82S3, C3×SD16, S3×D4, S3×Q8, Dic15, Dic15, C60, C60, D30, D30, C2×C30, C8×D5, C40⋊C2, D4.D5, Q8⋊D5, C5×SD16, D4×D5, Q8×D5, S3×SD16, C153C8, C120, Dic30, Dic30, C4×D15, C4×D15, D60, C157D4, D4×C15, Q8×C15, C22×D15, D5×SD16, C8×D15, C24⋊D5, D4.D15, Q82D15, C15×SD16, D4×D15, Q8×D15, SD16×D15
Quotients: C1, C2, C22, S3, D4, C23, D5, D6, SD16, C2×D4, D10, C22×S3, D15, C2×SD16, C22×D5, S3×D4, D30, D4×D5, S3×SD16, C22×D15, D5×SD16, D4×D15, SD16×D15

Smallest permutation representation of SD16×D15
On 120 points
Generators in S120
(1 110 31 84 16 99 50 65)(2 111 32 85 17 100 51 66)(3 112 33 86 18 101 52 67)(4 113 34 87 19 102 53 68)(5 114 35 88 20 103 54 69)(6 115 36 89 21 104 55 70)(7 116 37 90 22 105 56 71)(8 117 38 76 23 91 57 72)(9 118 39 77 24 92 58 73)(10 119 40 78 25 93 59 74)(11 120 41 79 26 94 60 75)(12 106 42 80 27 95 46 61)(13 107 43 81 28 96 47 62)(14 108 44 82 29 97 48 63)(15 109 45 83 30 98 49 64)
(31 50)(32 51)(33 52)(34 53)(35 54)(36 55)(37 56)(38 57)(39 58)(40 59)(41 60)(42 46)(43 47)(44 48)(45 49)(61 95)(62 96)(63 97)(64 98)(65 99)(66 100)(67 101)(68 102)(69 103)(70 104)(71 105)(72 91)(73 92)(74 93)(75 94)(76 117)(77 118)(78 119)(79 120)(80 106)(81 107)(82 108)(83 109)(84 110)(85 111)(86 112)(87 113)(88 114)(89 115)(90 116)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 30)(2 29)(3 28)(4 27)(5 26)(6 25)(7 24)(8 23)(9 22)(10 21)(11 20)(12 19)(13 18)(14 17)(15 16)(31 49)(32 48)(33 47)(34 46)(35 60)(36 59)(37 58)(38 57)(39 56)(40 55)(41 54)(42 53)(43 52)(44 51)(45 50)(61 87)(62 86)(63 85)(64 84)(65 83)(66 82)(67 81)(68 80)(69 79)(70 78)(71 77)(72 76)(73 90)(74 89)(75 88)(91 117)(92 116)(93 115)(94 114)(95 113)(96 112)(97 111)(98 110)(99 109)(100 108)(101 107)(102 106)(103 120)(104 119)(105 118)

G:=sub<Sym(120)| (1,110,31,84,16,99,50,65)(2,111,32,85,17,100,51,66)(3,112,33,86,18,101,52,67)(4,113,34,87,19,102,53,68)(5,114,35,88,20,103,54,69)(6,115,36,89,21,104,55,70)(7,116,37,90,22,105,56,71)(8,117,38,76,23,91,57,72)(9,118,39,77,24,92,58,73)(10,119,40,78,25,93,59,74)(11,120,41,79,26,94,60,75)(12,106,42,80,27,95,46,61)(13,107,43,81,28,96,47,62)(14,108,44,82,29,97,48,63)(15,109,45,83,30,98,49,64), (31,50)(32,51)(33,52)(34,53)(35,54)(36,55)(37,56)(38,57)(39,58)(40,59)(41,60)(42,46)(43,47)(44,48)(45,49)(61,95)(62,96)(63,97)(64,98)(65,99)(66,100)(67,101)(68,102)(69,103)(70,104)(71,105)(72,91)(73,92)(74,93)(75,94)(76,117)(77,118)(78,119)(79,120)(80,106)(81,107)(82,108)(83,109)(84,110)(85,111)(86,112)(87,113)(88,114)(89,115)(90,116), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,30)(2,29)(3,28)(4,27)(5,26)(6,25)(7,24)(8,23)(9,22)(10,21)(11,20)(12,19)(13,18)(14,17)(15,16)(31,49)(32,48)(33,47)(34,46)(35,60)(36,59)(37,58)(38,57)(39,56)(40,55)(41,54)(42,53)(43,52)(44,51)(45,50)(61,87)(62,86)(63,85)(64,84)(65,83)(66,82)(67,81)(68,80)(69,79)(70,78)(71,77)(72,76)(73,90)(74,89)(75,88)(91,117)(92,116)(93,115)(94,114)(95,113)(96,112)(97,111)(98,110)(99,109)(100,108)(101,107)(102,106)(103,120)(104,119)(105,118)>;

G:=Group( (1,110,31,84,16,99,50,65)(2,111,32,85,17,100,51,66)(3,112,33,86,18,101,52,67)(4,113,34,87,19,102,53,68)(5,114,35,88,20,103,54,69)(6,115,36,89,21,104,55,70)(7,116,37,90,22,105,56,71)(8,117,38,76,23,91,57,72)(9,118,39,77,24,92,58,73)(10,119,40,78,25,93,59,74)(11,120,41,79,26,94,60,75)(12,106,42,80,27,95,46,61)(13,107,43,81,28,96,47,62)(14,108,44,82,29,97,48,63)(15,109,45,83,30,98,49,64), (31,50)(32,51)(33,52)(34,53)(35,54)(36,55)(37,56)(38,57)(39,58)(40,59)(41,60)(42,46)(43,47)(44,48)(45,49)(61,95)(62,96)(63,97)(64,98)(65,99)(66,100)(67,101)(68,102)(69,103)(70,104)(71,105)(72,91)(73,92)(74,93)(75,94)(76,117)(77,118)(78,119)(79,120)(80,106)(81,107)(82,108)(83,109)(84,110)(85,111)(86,112)(87,113)(88,114)(89,115)(90,116), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,30)(2,29)(3,28)(4,27)(5,26)(6,25)(7,24)(8,23)(9,22)(10,21)(11,20)(12,19)(13,18)(14,17)(15,16)(31,49)(32,48)(33,47)(34,46)(35,60)(36,59)(37,58)(38,57)(39,56)(40,55)(41,54)(42,53)(43,52)(44,51)(45,50)(61,87)(62,86)(63,85)(64,84)(65,83)(66,82)(67,81)(68,80)(69,79)(70,78)(71,77)(72,76)(73,90)(74,89)(75,88)(91,117)(92,116)(93,115)(94,114)(95,113)(96,112)(97,111)(98,110)(99,109)(100,108)(101,107)(102,106)(103,120)(104,119)(105,118) );

G=PermutationGroup([[(1,110,31,84,16,99,50,65),(2,111,32,85,17,100,51,66),(3,112,33,86,18,101,52,67),(4,113,34,87,19,102,53,68),(5,114,35,88,20,103,54,69),(6,115,36,89,21,104,55,70),(7,116,37,90,22,105,56,71),(8,117,38,76,23,91,57,72),(9,118,39,77,24,92,58,73),(10,119,40,78,25,93,59,74),(11,120,41,79,26,94,60,75),(12,106,42,80,27,95,46,61),(13,107,43,81,28,96,47,62),(14,108,44,82,29,97,48,63),(15,109,45,83,30,98,49,64)], [(31,50),(32,51),(33,52),(34,53),(35,54),(36,55),(37,56),(38,57),(39,58),(40,59),(41,60),(42,46),(43,47),(44,48),(45,49),(61,95),(62,96),(63,97),(64,98),(65,99),(66,100),(67,101),(68,102),(69,103),(70,104),(71,105),(72,91),(73,92),(74,93),(75,94),(76,117),(77,118),(78,119),(79,120),(80,106),(81,107),(82,108),(83,109),(84,110),(85,111),(86,112),(87,113),(88,114),(89,115),(90,116)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,30),(2,29),(3,28),(4,27),(5,26),(6,25),(7,24),(8,23),(9,22),(10,21),(11,20),(12,19),(13,18),(14,17),(15,16),(31,49),(32,48),(33,47),(34,46),(35,60),(36,59),(37,58),(38,57),(39,56),(40,55),(41,54),(42,53),(43,52),(44,51),(45,50),(61,87),(62,86),(63,85),(64,84),(65,83),(66,82),(67,81),(68,80),(69,79),(70,78),(71,77),(72,76),(73,90),(74,89),(75,88),(91,117),(92,116),(93,115),(94,114),(95,113),(96,112),(97,111),(98,110),(99,109),(100,108),(101,107),(102,106),(103,120),(104,119),(105,118)]])

63 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D5A5B6A6B8A8B8C8D10A10B10C10D12A12B15A15B15C15D20A20B20C20D24A24B30A30B30C30D30E30F30G30H40A40B40C40D60A60B60C60D60E60F60G60H120A···120H
order1222223444455668888101010101212151515152020202024243030303030303030404040406060606060606060120···120
size114151560224306022282230302288482222448844222288884444444488884···4

63 irreducible representations

dim11111111222222222222222444444
type+++++++++++++++++++++++++
imageC1C2C2C2C2C2C2C2S3D4D4D5D6D6D6SD16D10D10D10D15D30D30D30S3×D4D4×D5S3×SD16D5×SD16D4×D15SD16×D15
kernelSD16×D15C8×D15C24⋊D5D4.D15Q82D15C15×SD16D4×D15Q8×D15C5×SD16Dic15D30C3×SD16C40C5×D4C5×Q8D15C24C3×D4C3×Q8SD16C8D4Q8C10C6C5C3C2C1
# reps11111111111211142224444122448

Matrix representation of SD16×D15 in GL6(𝔽241)

24000000
02400000
00240000
00024000
00003839
0000680
,
100000
010000
001000
000100
000010
000067240
,
190510000
1902400000
00119200
006423900
000010
000001
,
010000
100000
00119200
00024000
00002400
00000240

G:=sub<GL(6,GF(241))| [240,0,0,0,0,0,0,240,0,0,0,0,0,0,240,0,0,0,0,0,0,240,0,0,0,0,0,0,38,68,0,0,0,0,39,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,67,0,0,0,0,0,240],[190,190,0,0,0,0,51,240,0,0,0,0,0,0,1,64,0,0,0,0,192,239,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,192,240,0,0,0,0,0,0,240,0,0,0,0,0,0,240] >;

SD16×D15 in GAP, Magma, Sage, TeX

{\rm SD}_{16}\times D_{15}
% in TeX

G:=Group("SD16xD15");
// GroupNames label

G:=SmallGroup(480,878);
// by ID

G=gap.SmallGroup(480,878);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,135,100,346,185,80,2693,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^15=d^2=1,b*a*b=a^3,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽