Extensions 1→N→G→Q→1 with N=C8 and Q=C3×F5

Direct product G=N×Q with N=C8 and Q=C3×F5
dρLabelID
F5×C241204F5xC24480,271

Semidirect products G=N:Q with N=C8 and Q=C3×F5
extensionφ:Q→Aut NdρLabelID
C81(C3×F5) = C3×D5.D8φ: C3×F5/C3×D5C2 ⊆ Aut C81204C8:1(C3xF5)480,274
C82(C3×F5) = C3×C40⋊C4φ: C3×F5/C3×D5C2 ⊆ Aut C81204C8:2(C3xF5)480,273
C83(C3×F5) = C3×C8⋊F5φ: C3×F5/C3×D5C2 ⊆ Aut C81204C8:3(C3xF5)480,272

Non-split extensions G=N.Q with N=C8 and Q=C3×F5
extensionφ:Q→Aut NdρLabelID
C8.1(C3×F5) = C3×D10.Q8φ: C3×F5/C3×D5C2 ⊆ Aut C82404C8.1(C3xF5)480,276
C8.2(C3×F5) = C3×C40.C4φ: C3×F5/C3×D5C2 ⊆ Aut C82404C8.2(C3xF5)480,275
C8.3(C3×F5) = C3×C8.F5φ: C3×F5/C3×D5C2 ⊆ Aut C82404C8.3(C3xF5)480,270
C8.4(C3×F5) = C3×C5⋊C32central extension (φ=1)4804C8.4(C3xF5)480,5
C8.5(C3×F5) = C3×D5⋊C16central extension (φ=1)2404C8.5(C3xF5)480,269

׿
×
𝔽