Copied to
clipboard

G = C3×C40⋊C4order 480 = 25·3·5

Direct product of C3 and C40⋊C4

direct product, metacyclic, supersoluble, monomial, 2-hyperelementary

Aliases: C3×C40⋊C4, C246F5, C1206C4, C402C12, C82(C3×F5), C52C85C12, C4⋊F5.3C6, C4.8(C6×F5), (C8×D5).5C6, C153(C4.Q8), C20.8(C2×C12), C60.61(C2×C4), D10.8(C3×D4), (C6×D5).54D4, C6.15(C4⋊F5), C30.15(C4⋊C4), C12.61(C2×F5), (D5×C24).16C2, D5.1(C3×SD16), (C3×D5).7SD16, Dic5.2(C3×Q8), (C3×Dic5).13Q8, (D5×C12).127C22, C5⋊(C3×C4.Q8), C2.4(C3×C4⋊F5), C10.1(C3×C4⋊C4), (C3×C52C8)⋊15C4, (C3×C4⋊F5).7C2, (C4×D5).25(C2×C6), SmallGroup(480,273)

Series: Derived Chief Lower central Upper central

C1C20 — C3×C40⋊C4
C1C5C10C20C4×D5D5×C12C3×C4⋊F5 — C3×C40⋊C4
C5C10C20 — C3×C40⋊C4
C1C6C12C24

Generators and relations for C3×C40⋊C4
 G = < a,b,c | a3=b40=c4=1, ab=ba, ac=ca, cbc-1=b3 >

Subgroups: 280 in 72 conjugacy classes, 36 normal (28 characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, C6, C6, C8, C8, C2×C4, D5, C10, C12, C12, C2×C6, C15, C4⋊C4, C2×C8, Dic5, C20, F5, D10, C24, C24, C2×C12, C3×D5, C30, C4.Q8, C52C8, C40, C4×D5, C2×F5, C3×C4⋊C4, C2×C24, C3×Dic5, C60, C3×F5, C6×D5, C8×D5, C4⋊F5, C3×C4.Q8, C3×C52C8, C120, D5×C12, C6×F5, C40⋊C4, D5×C24, C3×C4⋊F5, C3×C40⋊C4
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, D4, Q8, C12, C2×C6, C4⋊C4, SD16, F5, C2×C12, C3×D4, C3×Q8, C4.Q8, C2×F5, C3×C4⋊C4, C3×SD16, C3×F5, C4⋊F5, C3×C4.Q8, C6×F5, C40⋊C4, C3×C4⋊F5, C3×C40⋊C4

Smallest permutation representation of C3×C40⋊C4
On 120 points
Generators in S120
(1 109 52)(2 110 53)(3 111 54)(4 112 55)(5 113 56)(6 114 57)(7 115 58)(8 116 59)(9 117 60)(10 118 61)(11 119 62)(12 120 63)(13 81 64)(14 82 65)(15 83 66)(16 84 67)(17 85 68)(18 86 69)(19 87 70)(20 88 71)(21 89 72)(22 90 73)(23 91 74)(24 92 75)(25 93 76)(26 94 77)(27 95 78)(28 96 79)(29 97 80)(30 98 41)(31 99 42)(32 100 43)(33 101 44)(34 102 45)(35 103 46)(36 104 47)(37 105 48)(38 106 49)(39 107 50)(40 108 51)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 36 21 16)(2 23 30 19)(3 10 39 22)(4 37 8 25)(5 24 17 28)(6 11 26 31)(7 38 35 34)(9 12 13 40)(14 27 18 15)(20 29 32 33)(41 70 53 74)(42 57 62 77)(43 44 71 80)(45 58 49 46)(47 72 67 52)(48 59 76 55)(50 73 54 61)(51 60 63 64)(56 75 68 79)(65 78 69 66)(81 108 117 120)(82 95 86 83)(84 109 104 89)(85 96 113 92)(87 110 91 98)(88 97 100 101)(90 111 118 107)(93 112 105 116)(94 99 114 119)(102 115 106 103)

G:=sub<Sym(120)| (1,109,52)(2,110,53)(3,111,54)(4,112,55)(5,113,56)(6,114,57)(7,115,58)(8,116,59)(9,117,60)(10,118,61)(11,119,62)(12,120,63)(13,81,64)(14,82,65)(15,83,66)(16,84,67)(17,85,68)(18,86,69)(19,87,70)(20,88,71)(21,89,72)(22,90,73)(23,91,74)(24,92,75)(25,93,76)(26,94,77)(27,95,78)(28,96,79)(29,97,80)(30,98,41)(31,99,42)(32,100,43)(33,101,44)(34,102,45)(35,103,46)(36,104,47)(37,105,48)(38,106,49)(39,107,50)(40,108,51), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,36,21,16)(2,23,30,19)(3,10,39,22)(4,37,8,25)(5,24,17,28)(6,11,26,31)(7,38,35,34)(9,12,13,40)(14,27,18,15)(20,29,32,33)(41,70,53,74)(42,57,62,77)(43,44,71,80)(45,58,49,46)(47,72,67,52)(48,59,76,55)(50,73,54,61)(51,60,63,64)(56,75,68,79)(65,78,69,66)(81,108,117,120)(82,95,86,83)(84,109,104,89)(85,96,113,92)(87,110,91,98)(88,97,100,101)(90,111,118,107)(93,112,105,116)(94,99,114,119)(102,115,106,103)>;

G:=Group( (1,109,52)(2,110,53)(3,111,54)(4,112,55)(5,113,56)(6,114,57)(7,115,58)(8,116,59)(9,117,60)(10,118,61)(11,119,62)(12,120,63)(13,81,64)(14,82,65)(15,83,66)(16,84,67)(17,85,68)(18,86,69)(19,87,70)(20,88,71)(21,89,72)(22,90,73)(23,91,74)(24,92,75)(25,93,76)(26,94,77)(27,95,78)(28,96,79)(29,97,80)(30,98,41)(31,99,42)(32,100,43)(33,101,44)(34,102,45)(35,103,46)(36,104,47)(37,105,48)(38,106,49)(39,107,50)(40,108,51), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,36,21,16)(2,23,30,19)(3,10,39,22)(4,37,8,25)(5,24,17,28)(6,11,26,31)(7,38,35,34)(9,12,13,40)(14,27,18,15)(20,29,32,33)(41,70,53,74)(42,57,62,77)(43,44,71,80)(45,58,49,46)(47,72,67,52)(48,59,76,55)(50,73,54,61)(51,60,63,64)(56,75,68,79)(65,78,69,66)(81,108,117,120)(82,95,86,83)(84,109,104,89)(85,96,113,92)(87,110,91,98)(88,97,100,101)(90,111,118,107)(93,112,105,116)(94,99,114,119)(102,115,106,103) );

G=PermutationGroup([[(1,109,52),(2,110,53),(3,111,54),(4,112,55),(5,113,56),(6,114,57),(7,115,58),(8,116,59),(9,117,60),(10,118,61),(11,119,62),(12,120,63),(13,81,64),(14,82,65),(15,83,66),(16,84,67),(17,85,68),(18,86,69),(19,87,70),(20,88,71),(21,89,72),(22,90,73),(23,91,74),(24,92,75),(25,93,76),(26,94,77),(27,95,78),(28,96,79),(29,97,80),(30,98,41),(31,99,42),(32,100,43),(33,101,44),(34,102,45),(35,103,46),(36,104,47),(37,105,48),(38,106,49),(39,107,50),(40,108,51)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,36,21,16),(2,23,30,19),(3,10,39,22),(4,37,8,25),(5,24,17,28),(6,11,26,31),(7,38,35,34),(9,12,13,40),(14,27,18,15),(20,29,32,33),(41,70,53,74),(42,57,62,77),(43,44,71,80),(45,58,49,46),(47,72,67,52),(48,59,76,55),(50,73,54,61),(51,60,63,64),(56,75,68,79),(65,78,69,66),(81,108,117,120),(82,95,86,83),(84,109,104,89),(85,96,113,92),(87,110,91,98),(88,97,100,101),(90,111,118,107),(93,112,105,116),(94,99,114,119),(102,115,106,103)]])

66 conjugacy classes

class 1 2A2B2C3A3B4A4B4C4D4E4F 5 6A6B6C6D6E6F8A8B8C8D 10 12A12B12C12D12E···12L15A15B20A20B24A24B24C24D24E24F24G24H30A30B40A40B40C40D60A60B60C60D120A···120H
order12223344444456666668888101212121212···1215152020242424242424242430304040404060606060120···120
size115511210202020204115555221010422101020···20444422221010101044444444444···4

66 irreducible representations

dim111111111122222244444444
type+++-+++
imageC1C2C2C3C4C4C6C6C12C12Q8D4SD16C3×Q8C3×D4C3×SD16F5C2×F5C3×F5C4⋊F5C6×F5C40⋊C4C3×C4⋊F5C3×C40⋊C4
kernelC3×C40⋊C4D5×C24C3×C4⋊F5C40⋊C4C3×C52C8C120C8×D5C4⋊F5C52C8C40C3×Dic5C6×D5C3×D5Dic5D10D5C24C12C8C6C4C3C2C1
# reps112222244411422811222448

Matrix representation of C3×C40⋊C4 in GL6(𝔽241)

100000
010000
0015000
0001500
0000150
0000015
,
222190000
2222220000
00020717224
00342072240
00170224207
003422417207
,
112300000
2302300000
0020734170
00224340207
00207034224
0001734207

G:=sub<GL(6,GF(241))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,15,0,0,0,0,0,0,15,0,0,0,0,0,0,15,0,0,0,0,0,0,15],[222,222,0,0,0,0,19,222,0,0,0,0,0,0,0,34,17,34,0,0,207,207,0,224,0,0,17,224,224,17,0,0,224,0,207,207],[11,230,0,0,0,0,230,230,0,0,0,0,0,0,207,224,207,0,0,0,34,34,0,17,0,0,17,0,34,34,0,0,0,207,224,207] >;

C3×C40⋊C4 in GAP, Magma, Sage, TeX

C_3\times C_{40}\rtimes C_4
% in TeX

G:=Group("C3xC40:C4");
// GroupNames label

G:=SmallGroup(480,273);
// by ID

G=gap.SmallGroup(480,273);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-2,-5,84,365,176,2524,102,9414,1595]);
// Polycyclic

G:=Group<a,b,c|a^3=b^40=c^4=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^3>;
// generators/relations

׿
×
𝔽