Copied to
clipboard

G = F5×C24order 480 = 25·3·5

Direct product of C24 and F5

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: F5×C24, C1207C4, C403C12, C30.13C42, C5⋊C83C12, C155(C4×C8), C51(C4×C24), D5.(C2×C24), C52C87C12, D5⋊C8.3C6, (C8×D5).9C6, (C6×F5).4C4, (C4×F5).3C6, C4.15(C6×F5), C2.1(C12×F5), C6.13(C4×F5), C10.1(C4×C12), C60.68(C2×C4), (C2×F5).2C12, (C12×F5).6C2, C12.68(C2×F5), C20.15(C2×C12), (D5×C24).20C2, D10.5(C2×C12), Dic5.7(C2×C12), (D5×C12).135C22, (C3×C5⋊C8)⋊7C4, (C3×C52C8)⋊17C4, (C3×D5⋊C8).6C2, (C3×D5).4(C2×C8), (C4×D5).32(C2×C6), (C6×D5).43(C2×C4), (C3×Dic5).51(C2×C4), SmallGroup(480,271)

Series: Derived Chief Lower central Upper central

C1C5 — F5×C24
C1C5C10C20C4×D5D5×C12C12×F5 — F5×C24
C5 — F5×C24
C1C24

Generators and relations for F5×C24
 G = < a,b,c | a24=b5=c4=1, ab=ba, ac=ca, cbc-1=b3 >

Subgroups: 232 in 88 conjugacy classes, 52 normal (32 characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, C6, C6, C8, C8, C2×C4, D5, C10, C12, C12, C2×C6, C15, C42, C2×C8, Dic5, C20, F5, D10, C24, C24, C2×C12, C3×D5, C30, C4×C8, C52C8, C40, C5⋊C8, C4×D5, C2×F5, C4×C12, C2×C24, C3×Dic5, C60, C3×F5, C6×D5, C8×D5, D5⋊C8, C4×F5, C4×C24, C3×C52C8, C120, C3×C5⋊C8, D5×C12, C6×F5, C8×F5, D5×C24, C3×D5⋊C8, C12×F5, F5×C24
Quotients: C1, C2, C3, C4, C22, C6, C8, C2×C4, C12, C2×C6, C42, C2×C8, F5, C24, C2×C12, C4×C8, C2×F5, C4×C12, C2×C24, C3×F5, C4×F5, C4×C24, C6×F5, C8×F5, C12×F5, F5×C24

Smallest permutation representation of F5×C24
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 71 98 73 43)(2 72 99 74 44)(3 49 100 75 45)(4 50 101 76 46)(5 51 102 77 47)(6 52 103 78 48)(7 53 104 79 25)(8 54 105 80 26)(9 55 106 81 27)(10 56 107 82 28)(11 57 108 83 29)(12 58 109 84 30)(13 59 110 85 31)(14 60 111 86 32)(15 61 112 87 33)(16 62 113 88 34)(17 63 114 89 35)(18 64 115 90 36)(19 65 116 91 37)(20 66 117 92 38)(21 67 118 93 39)(22 68 119 94 40)(23 69 120 95 41)(24 70 97 96 42)
(1 13)(2 14)(3 15)(4 16)(5 17)(6 18)(7 19)(8 20)(9 21)(10 22)(11 23)(12 24)(25 91 53 116)(26 92 54 117)(27 93 55 118)(28 94 56 119)(29 95 57 120)(30 96 58 97)(31 73 59 98)(32 74 60 99)(33 75 61 100)(34 76 62 101)(35 77 63 102)(36 78 64 103)(37 79 65 104)(38 80 66 105)(39 81 67 106)(40 82 68 107)(41 83 69 108)(42 84 70 109)(43 85 71 110)(44 86 72 111)(45 87 49 112)(46 88 50 113)(47 89 51 114)(48 90 52 115)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,71,98,73,43)(2,72,99,74,44)(3,49,100,75,45)(4,50,101,76,46)(5,51,102,77,47)(6,52,103,78,48)(7,53,104,79,25)(8,54,105,80,26)(9,55,106,81,27)(10,56,107,82,28)(11,57,108,83,29)(12,58,109,84,30)(13,59,110,85,31)(14,60,111,86,32)(15,61,112,87,33)(16,62,113,88,34)(17,63,114,89,35)(18,64,115,90,36)(19,65,116,91,37)(20,66,117,92,38)(21,67,118,93,39)(22,68,119,94,40)(23,69,120,95,41)(24,70,97,96,42), (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24)(25,91,53,116)(26,92,54,117)(27,93,55,118)(28,94,56,119)(29,95,57,120)(30,96,58,97)(31,73,59,98)(32,74,60,99)(33,75,61,100)(34,76,62,101)(35,77,63,102)(36,78,64,103)(37,79,65,104)(38,80,66,105)(39,81,67,106)(40,82,68,107)(41,83,69,108)(42,84,70,109)(43,85,71,110)(44,86,72,111)(45,87,49,112)(46,88,50,113)(47,89,51,114)(48,90,52,115)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,71,98,73,43)(2,72,99,74,44)(3,49,100,75,45)(4,50,101,76,46)(5,51,102,77,47)(6,52,103,78,48)(7,53,104,79,25)(8,54,105,80,26)(9,55,106,81,27)(10,56,107,82,28)(11,57,108,83,29)(12,58,109,84,30)(13,59,110,85,31)(14,60,111,86,32)(15,61,112,87,33)(16,62,113,88,34)(17,63,114,89,35)(18,64,115,90,36)(19,65,116,91,37)(20,66,117,92,38)(21,67,118,93,39)(22,68,119,94,40)(23,69,120,95,41)(24,70,97,96,42), (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24)(25,91,53,116)(26,92,54,117)(27,93,55,118)(28,94,56,119)(29,95,57,120)(30,96,58,97)(31,73,59,98)(32,74,60,99)(33,75,61,100)(34,76,62,101)(35,77,63,102)(36,78,64,103)(37,79,65,104)(38,80,66,105)(39,81,67,106)(40,82,68,107)(41,83,69,108)(42,84,70,109)(43,85,71,110)(44,86,72,111)(45,87,49,112)(46,88,50,113)(47,89,51,114)(48,90,52,115) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,71,98,73,43),(2,72,99,74,44),(3,49,100,75,45),(4,50,101,76,46),(5,51,102,77,47),(6,52,103,78,48),(7,53,104,79,25),(8,54,105,80,26),(9,55,106,81,27),(10,56,107,82,28),(11,57,108,83,29),(12,58,109,84,30),(13,59,110,85,31),(14,60,111,86,32),(15,61,112,87,33),(16,62,113,88,34),(17,63,114,89,35),(18,64,115,90,36),(19,65,116,91,37),(20,66,117,92,38),(21,67,118,93,39),(22,68,119,94,40),(23,69,120,95,41),(24,70,97,96,42)], [(1,13),(2,14),(3,15),(4,16),(5,17),(6,18),(7,19),(8,20),(9,21),(10,22),(11,23),(12,24),(25,91,53,116),(26,92,54,117),(27,93,55,118),(28,94,56,119),(29,95,57,120),(30,96,58,97),(31,73,59,98),(32,74,60,99),(33,75,61,100),(34,76,62,101),(35,77,63,102),(36,78,64,103),(37,79,65,104),(38,80,66,105),(39,81,67,106),(40,82,68,107),(41,83,69,108),(42,84,70,109),(43,85,71,110),(44,86,72,111),(45,87,49,112),(46,88,50,113),(47,89,51,114),(48,90,52,115)]])

120 conjugacy classes

class 1 2A2B2C3A3B4A4B4C···4L 5 6A6B6C6D6E6F8A8B8C8D8E···8P 10 12A12B12C12D12E···12X15A15B20A20B24A···24H24I···24AF30A30B40A40B40C40D60A60B60C60D120A···120H
order122233444···4566666688888···8101212121212···121515202024···2424···2430304040404060606060120···120
size115511115···5411555511115···5411115···544441···15···544444444444···4

120 irreducible representations

dim11111111111111111144444444
type++++++
imageC1C2C2C2C3C4C4C4C4C6C6C6C8C12C12C12C12C24F5C2×F5C3×F5C4×F5C6×F5C8×F5C12×F5F5×C24
kernelF5×C24D5×C24C3×D5⋊C8C12×F5C8×F5C3×C52C8C120C3×C5⋊C8C6×F5C8×D5D5⋊C8C4×F5C3×F5C52C8C40C5⋊C8C2×F5F5C24C12C8C6C4C3C2C1
# reps1111222442221644883211222448

Matrix representation of F5×C24 in GL5(𝔽241)

1210000
04000
00400
00040
00004
,
10000
0240240240240
01000
00100
00010
,
1770000
00010
01000
00001
00100

G:=sub<GL(5,GF(241))| [121,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,4],[1,0,0,0,0,0,240,1,0,0,0,240,0,1,0,0,240,0,0,1,0,240,0,0,0],[177,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,1,0] >;

F5×C24 in GAP, Magma, Sage, TeX

F_5\times C_{24}
% in TeX

G:=Group("F5xC24");
// GroupNames label

G:=SmallGroup(480,271);
// by ID

G=gap.SmallGroup(480,271);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-2,-5,84,176,102,9414,1595]);
// Polycyclic

G:=Group<a,b,c|a^24=b^5=c^4=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^3>;
// generators/relations

׿
×
𝔽