Copied to
clipboard

G = C3×C8⋊F5order 480 = 25·3·5

Direct product of C3 and C8⋊F5

direct product, metacyclic, supersoluble, monomial, 2-hyperelementary

Aliases: C3×C8⋊F5, C247F5, C1208C4, C404C12, C30.14C42, C5⋊C81C12, C83(C3×F5), C52C88C12, (C2×F5).C12, D5⋊C8.2C6, C155(C8⋊C4), (C6×F5).3C4, (C4×F5).2C6, C2.3(C12×F5), C6.14(C4×F5), C4.16(C6×F5), C10.2(C4×C12), C60.69(C2×C4), (C8×D5).10C6, (C12×F5).5C2, C12.69(C2×F5), D5.(C3×M4(2)), C20.16(C2×C12), (D5×C24).21C2, D10.6(C2×C12), Dic5.8(C2×C12), (C3×D5).4M4(2), (D5×C12).136C22, (C3×C5⋊C8)⋊5C4, C51(C3×C8⋊C4), (C3×C52C8)⋊18C4, (C3×D5⋊C8).5C2, (C6×D5).44(C2×C4), (C4×D5).33(C2×C6), (C3×Dic5).52(C2×C4), SmallGroup(480,272)

Series: Derived Chief Lower central Upper central

C1C10 — C3×C8⋊F5
C1C5C10C20C4×D5D5×C12C12×F5 — C3×C8⋊F5
C5C10 — C3×C8⋊F5
C1C12C24

Generators and relations for C3×C8⋊F5
 G = < a,b,c,d | a3=b8=c5=d4=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b5, dcd-1=c3 >

Subgroups: 232 in 80 conjugacy classes, 44 normal (32 characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, C6, C6, C8, C8, C2×C4, D5, C10, C12, C12, C2×C6, C15, C42, C2×C8, Dic5, C20, F5, D10, C24, C24, C2×C12, C3×D5, C30, C8⋊C4, C52C8, C40, C5⋊C8, C4×D5, C2×F5, C4×C12, C2×C24, C3×Dic5, C60, C3×F5, C6×D5, C8×D5, D5⋊C8, C4×F5, C3×C8⋊C4, C3×C52C8, C120, C3×C5⋊C8, D5×C12, C6×F5, C8⋊F5, D5×C24, C3×D5⋊C8, C12×F5, C3×C8⋊F5
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, C12, C2×C6, C42, M4(2), F5, C2×C12, C8⋊C4, C2×F5, C4×C12, C3×M4(2), C3×F5, C4×F5, C3×C8⋊C4, C6×F5, C8⋊F5, C12×F5, C3×C8⋊F5

Smallest permutation representation of C3×C8⋊F5
On 120 points
Generators in S120
(1 100 60)(2 101 61)(3 102 62)(4 103 63)(5 104 64)(6 97 57)(7 98 58)(8 99 59)(9 86 46)(10 87 47)(11 88 48)(12 81 41)(13 82 42)(14 83 43)(15 84 44)(16 85 45)(17 95 120)(18 96 113)(19 89 114)(20 90 115)(21 91 116)(22 92 117)(23 93 118)(24 94 119)(25 110 66)(26 111 67)(27 112 68)(28 105 69)(29 106 70)(30 107 71)(31 108 72)(32 109 65)(33 56 74)(34 49 75)(35 50 76)(36 51 77)(37 52 78)(38 53 79)(39 54 80)(40 55 73)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)
(1 49 46 22 105)(2 50 47 23 106)(3 51 48 24 107)(4 52 41 17 108)(5 53 42 18 109)(6 54 43 19 110)(7 55 44 20 111)(8 56 45 21 112)(9 92 69 100 75)(10 93 70 101 76)(11 94 71 102 77)(12 95 72 103 78)(13 96 65 104 79)(14 89 66 97 80)(15 90 67 98 73)(16 91 68 99 74)(25 57 39 83 114)(26 58 40 84 115)(27 59 33 85 116)(28 60 34 86 117)(29 61 35 87 118)(30 62 36 88 119)(31 63 37 81 120)(32 64 38 82 113)
(2 6)(4 8)(9 69 92 75)(10 66 93 80)(11 71 94 77)(12 68 95 74)(13 65 96 79)(14 70 89 76)(15 67 90 73)(16 72 91 78)(17 56 41 112)(18 53 42 109)(19 50 43 106)(20 55 44 111)(21 52 45 108)(22 49 46 105)(23 54 47 110)(24 51 48 107)(25 118 39 87)(26 115 40 84)(27 120 33 81)(28 117 34 86)(29 114 35 83)(30 119 36 88)(31 116 37 85)(32 113 38 82)(57 61)(59 63)(97 101)(99 103)

G:=sub<Sym(120)| (1,100,60)(2,101,61)(3,102,62)(4,103,63)(5,104,64)(6,97,57)(7,98,58)(8,99,59)(9,86,46)(10,87,47)(11,88,48)(12,81,41)(13,82,42)(14,83,43)(15,84,44)(16,85,45)(17,95,120)(18,96,113)(19,89,114)(20,90,115)(21,91,116)(22,92,117)(23,93,118)(24,94,119)(25,110,66)(26,111,67)(27,112,68)(28,105,69)(29,106,70)(30,107,71)(31,108,72)(32,109,65)(33,56,74)(34,49,75)(35,50,76)(36,51,77)(37,52,78)(38,53,79)(39,54,80)(40,55,73), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120), (1,49,46,22,105)(2,50,47,23,106)(3,51,48,24,107)(4,52,41,17,108)(5,53,42,18,109)(6,54,43,19,110)(7,55,44,20,111)(8,56,45,21,112)(9,92,69,100,75)(10,93,70,101,76)(11,94,71,102,77)(12,95,72,103,78)(13,96,65,104,79)(14,89,66,97,80)(15,90,67,98,73)(16,91,68,99,74)(25,57,39,83,114)(26,58,40,84,115)(27,59,33,85,116)(28,60,34,86,117)(29,61,35,87,118)(30,62,36,88,119)(31,63,37,81,120)(32,64,38,82,113), (2,6)(4,8)(9,69,92,75)(10,66,93,80)(11,71,94,77)(12,68,95,74)(13,65,96,79)(14,70,89,76)(15,67,90,73)(16,72,91,78)(17,56,41,112)(18,53,42,109)(19,50,43,106)(20,55,44,111)(21,52,45,108)(22,49,46,105)(23,54,47,110)(24,51,48,107)(25,118,39,87)(26,115,40,84)(27,120,33,81)(28,117,34,86)(29,114,35,83)(30,119,36,88)(31,116,37,85)(32,113,38,82)(57,61)(59,63)(97,101)(99,103)>;

G:=Group( (1,100,60)(2,101,61)(3,102,62)(4,103,63)(5,104,64)(6,97,57)(7,98,58)(8,99,59)(9,86,46)(10,87,47)(11,88,48)(12,81,41)(13,82,42)(14,83,43)(15,84,44)(16,85,45)(17,95,120)(18,96,113)(19,89,114)(20,90,115)(21,91,116)(22,92,117)(23,93,118)(24,94,119)(25,110,66)(26,111,67)(27,112,68)(28,105,69)(29,106,70)(30,107,71)(31,108,72)(32,109,65)(33,56,74)(34,49,75)(35,50,76)(36,51,77)(37,52,78)(38,53,79)(39,54,80)(40,55,73), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120), (1,49,46,22,105)(2,50,47,23,106)(3,51,48,24,107)(4,52,41,17,108)(5,53,42,18,109)(6,54,43,19,110)(7,55,44,20,111)(8,56,45,21,112)(9,92,69,100,75)(10,93,70,101,76)(11,94,71,102,77)(12,95,72,103,78)(13,96,65,104,79)(14,89,66,97,80)(15,90,67,98,73)(16,91,68,99,74)(25,57,39,83,114)(26,58,40,84,115)(27,59,33,85,116)(28,60,34,86,117)(29,61,35,87,118)(30,62,36,88,119)(31,63,37,81,120)(32,64,38,82,113), (2,6)(4,8)(9,69,92,75)(10,66,93,80)(11,71,94,77)(12,68,95,74)(13,65,96,79)(14,70,89,76)(15,67,90,73)(16,72,91,78)(17,56,41,112)(18,53,42,109)(19,50,43,106)(20,55,44,111)(21,52,45,108)(22,49,46,105)(23,54,47,110)(24,51,48,107)(25,118,39,87)(26,115,40,84)(27,120,33,81)(28,117,34,86)(29,114,35,83)(30,119,36,88)(31,116,37,85)(32,113,38,82)(57,61)(59,63)(97,101)(99,103) );

G=PermutationGroup([[(1,100,60),(2,101,61),(3,102,62),(4,103,63),(5,104,64),(6,97,57),(7,98,58),(8,99,59),(9,86,46),(10,87,47),(11,88,48),(12,81,41),(13,82,42),(14,83,43),(15,84,44),(16,85,45),(17,95,120),(18,96,113),(19,89,114),(20,90,115),(21,91,116),(22,92,117),(23,93,118),(24,94,119),(25,110,66),(26,111,67),(27,112,68),(28,105,69),(29,106,70),(30,107,71),(31,108,72),(32,109,65),(33,56,74),(34,49,75),(35,50,76),(36,51,77),(37,52,78),(38,53,79),(39,54,80),(40,55,73)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120)], [(1,49,46,22,105),(2,50,47,23,106),(3,51,48,24,107),(4,52,41,17,108),(5,53,42,18,109),(6,54,43,19,110),(7,55,44,20,111),(8,56,45,21,112),(9,92,69,100,75),(10,93,70,101,76),(11,94,71,102,77),(12,95,72,103,78),(13,96,65,104,79),(14,89,66,97,80),(15,90,67,98,73),(16,91,68,99,74),(25,57,39,83,114),(26,58,40,84,115),(27,59,33,85,116),(28,60,34,86,117),(29,61,35,87,118),(30,62,36,88,119),(31,63,37,81,120),(32,64,38,82,113)], [(2,6),(4,8),(9,69,92,75),(10,66,93,80),(11,71,94,77),(12,68,95,74),(13,65,96,79),(14,70,89,76),(15,67,90,73),(16,72,91,78),(17,56,41,112),(18,53,42,109),(19,50,43,106),(20,55,44,111),(21,52,45,108),(22,49,46,105),(23,54,47,110),(24,51,48,107),(25,118,39,87),(26,115,40,84),(27,120,33,81),(28,117,34,86),(29,114,35,83),(30,119,36,88),(31,116,37,85),(32,113,38,82),(57,61),(59,63),(97,101),(99,103)]])

84 conjugacy classes

class 1 2A2B2C3A3B4A4B4C4D4E4F4G4H 5 6A6B6C6D6E6F8A8B8C···8H 10 12A12B12C12D12E12F12G12H12I···12P15A15B20A20B24A24B24C24D24E···24P30A30B40A40B40C40D60A60B60C60D120A···120H
order122233444444445666666888···810121212121212121212···12151520202424242424···2430304040404060606060120···120
size11551111551010101041155552210···1041111555510···104444222210···1044444444444···4

84 irreducible representations

dim11111111111111112244444444
type++++++
imageC1C2C2C2C3C4C4C4C4C6C6C6C12C12C12C12M4(2)C3×M4(2)F5C2×F5C3×F5C4×F5C6×F5C8⋊F5C12×F5C3×C8⋊F5
kernelC3×C8⋊F5D5×C24C3×D5⋊C8C12×F5C8⋊F5C3×C52C8C120C3×C5⋊C8C6×F5C8×D5D5⋊C8C4×F5C52C8C40C5⋊C8C2×F5C3×D5D5C24C12C8C6C4C3C2C1
# reps11112224422244884811222448

Matrix representation of C3×C8⋊F5 in GL6(𝔽241)

1500000
0150000
0015000
0001500
0000150
0000015
,
2401280000
15210000
00177000
00017700
00001770
00000177
,
100000
010000
00240100
00240010
00240001
00240000
,
6400000
11770000
00102400
00002401
00012400
00002400

G:=sub<GL(6,GF(241))| [15,0,0,0,0,0,0,15,0,0,0,0,0,0,15,0,0,0,0,0,0,15,0,0,0,0,0,0,15,0,0,0,0,0,0,15],[240,152,0,0,0,0,128,1,0,0,0,0,0,0,177,0,0,0,0,0,0,177,0,0,0,0,0,0,177,0,0,0,0,0,0,177],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,240,240,240,240,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[64,1,0,0,0,0,0,177,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,240,240,240,240,0,0,0,1,0,0] >;

C3×C8⋊F5 in GAP, Magma, Sage, TeX

C_3\times C_8\rtimes F_5
% in TeX

G:=Group("C3xC8:F5");
// GroupNames label

G:=SmallGroup(480,272);
// by ID

G=gap.SmallGroup(480,272);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-2,-5,84,701,176,102,9414,1595]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^8=c^5=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^5,d*c*d^-1=c^3>;
// generators/relations

׿
×
𝔽