Extensions 1→N→G→Q→1 with N=D40 and Q=S3

Direct product G=N×Q with N=D40 and Q=S3
dρLabelID
S3×D401204+S3xD40480,328

Semidirect products G=N:Q with N=D40 and Q=S3
extensionφ:Q→Out NdρLabelID
D401S3 = C3⋊D80φ: S3/C3C2 ⊆ Out D402404+D40:1S3480,14
D402S3 = D40⋊S3φ: S3/C3C2 ⊆ Out D401204D40:2S3480,330
D403S3 = C15⋊D16φ: S3/C3C2 ⊆ Out D402404D40:3S3480,13
D404S3 = C405D6φ: S3/C3C2 ⊆ Out D401204D40:4S3480,332
D405S3 = D405S3φ: S3/C3C2 ⊆ Out D402404D40:5S3480,353
D406S3 = C408D6φ: S3/C3C2 ⊆ Out D401204D40:6S3480,334
D407S3 = D407S3φ: trivial image2404-D40:7S3480,349

Non-split extensions G=N.Q with N=D40 and Q=S3
extensionφ:Q→Out NdρLabelID
D40.1S3 = D40.S3φ: S3/C3C2 ⊆ Out D402404-D40.1S3480,18
D40.2S3 = C40.D6φ: S3/C3C2 ⊆ Out D402404D40.2S3480,16

׿
×
𝔽