Extensions 1→N→G→Q→1 with N=C27 and Q=C3×S3

Direct product G=N×Q with N=C27 and Q=C3×S3
dρLabelID
S3×C3×C27162S3xC3xC27486,112

Semidirect products G=N:Q with N=C27 and Q=C3×S3
extensionφ:Q→Aut NdρLabelID
C27⋊(C3×S3) = C33.5D9φ: C3×S3/C3C6 ⊆ Aut C2781C27:(C3xS3)486,162
C272(C3×S3) = S3×C27⋊C3φ: C3×S3/S3C3 ⊆ Aut C27546C27:2(C3xS3)486,114
C273(C3×S3) = C3×C27⋊S3φ: C3×S3/C32C2 ⊆ Aut C27162C27:3(C3xS3)486,160

Non-split extensions G=N.Q with N=C27 and Q=C3×S3
extensionφ:Q→Aut NdρLabelID
C27.1(C3×S3) = C3×D81φ: C3×S3/C32C2 ⊆ Aut C271622C27.1(C3xS3)486,32
C27.2(C3×S3) = C81⋊C6φ: C3×S3/C32C2 ⊆ Aut C27816+C27.2(C3xS3)486,34
C27.3(C3×S3) = He3.5D9φ: C3×S3/C32C2 ⊆ Aut C27816+C27.3(C3xS3)486,163
C27.4(C3×S3) = S3×C81central extension (φ=1)1622C27.4(C3xS3)486,33

׿
×
𝔽