direct product, metacyclic, supersoluble, monomial, A-group
Aliases: S3×C81, C3⋊C162, C32.2C54, (C3×C81)⋊1C2, (S3×C27).C3, (C3×S3).C27, C9.6(S3×C9), (S3×C9).2C9, C3.4(S3×C27), C27.4(C3×S3), (C3×C9).9C18, (C3×C27).5C6, SmallGroup(486,33)
Series: Derived ►Chief ►Lower central ►Upper central
C3 — S3×C81 |
Generators and relations for S3×C81
G = < a,b,c | a81=b3=c2=1, ab=ba, ac=ca, cbc=b-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162)
(1 28 55)(2 29 56)(3 30 57)(4 31 58)(5 32 59)(6 33 60)(7 34 61)(8 35 62)(9 36 63)(10 37 64)(11 38 65)(12 39 66)(13 40 67)(14 41 68)(15 42 69)(16 43 70)(17 44 71)(18 45 72)(19 46 73)(20 47 74)(21 48 75)(22 49 76)(23 50 77)(24 51 78)(25 52 79)(26 53 80)(27 54 81)(82 136 109)(83 137 110)(84 138 111)(85 139 112)(86 140 113)(87 141 114)(88 142 115)(89 143 116)(90 144 117)(91 145 118)(92 146 119)(93 147 120)(94 148 121)(95 149 122)(96 150 123)(97 151 124)(98 152 125)(99 153 126)(100 154 127)(101 155 128)(102 156 129)(103 157 130)(104 158 131)(105 159 132)(106 160 133)(107 161 134)(108 162 135)
(1 135)(2 136)(3 137)(4 138)(5 139)(6 140)(7 141)(8 142)(9 143)(10 144)(11 145)(12 146)(13 147)(14 148)(15 149)(16 150)(17 151)(18 152)(19 153)(20 154)(21 155)(22 156)(23 157)(24 158)(25 159)(26 160)(27 161)(28 162)(29 82)(30 83)(31 84)(32 85)(33 86)(34 87)(35 88)(36 89)(37 90)(38 91)(39 92)(40 93)(41 94)(42 95)(43 96)(44 97)(45 98)(46 99)(47 100)(48 101)(49 102)(50 103)(51 104)(52 105)(53 106)(54 107)(55 108)(56 109)(57 110)(58 111)(59 112)(60 113)(61 114)(62 115)(63 116)(64 117)(65 118)(66 119)(67 120)(68 121)(69 122)(70 123)(71 124)(72 125)(73 126)(74 127)(75 128)(76 129)(77 130)(78 131)(79 132)(80 133)(81 134)
G:=sub<Sym(162)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162), (1,28,55)(2,29,56)(3,30,57)(4,31,58)(5,32,59)(6,33,60)(7,34,61)(8,35,62)(9,36,63)(10,37,64)(11,38,65)(12,39,66)(13,40,67)(14,41,68)(15,42,69)(16,43,70)(17,44,71)(18,45,72)(19,46,73)(20,47,74)(21,48,75)(22,49,76)(23,50,77)(24,51,78)(25,52,79)(26,53,80)(27,54,81)(82,136,109)(83,137,110)(84,138,111)(85,139,112)(86,140,113)(87,141,114)(88,142,115)(89,143,116)(90,144,117)(91,145,118)(92,146,119)(93,147,120)(94,148,121)(95,149,122)(96,150,123)(97,151,124)(98,152,125)(99,153,126)(100,154,127)(101,155,128)(102,156,129)(103,157,130)(104,158,131)(105,159,132)(106,160,133)(107,161,134)(108,162,135), (1,135)(2,136)(3,137)(4,138)(5,139)(6,140)(7,141)(8,142)(9,143)(10,144)(11,145)(12,146)(13,147)(14,148)(15,149)(16,150)(17,151)(18,152)(19,153)(20,154)(21,155)(22,156)(23,157)(24,158)(25,159)(26,160)(27,161)(28,162)(29,82)(30,83)(31,84)(32,85)(33,86)(34,87)(35,88)(36,89)(37,90)(38,91)(39,92)(40,93)(41,94)(42,95)(43,96)(44,97)(45,98)(46,99)(47,100)(48,101)(49,102)(50,103)(51,104)(52,105)(53,106)(54,107)(55,108)(56,109)(57,110)(58,111)(59,112)(60,113)(61,114)(62,115)(63,116)(64,117)(65,118)(66,119)(67,120)(68,121)(69,122)(70,123)(71,124)(72,125)(73,126)(74,127)(75,128)(76,129)(77,130)(78,131)(79,132)(80,133)(81,134)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162), (1,28,55)(2,29,56)(3,30,57)(4,31,58)(5,32,59)(6,33,60)(7,34,61)(8,35,62)(9,36,63)(10,37,64)(11,38,65)(12,39,66)(13,40,67)(14,41,68)(15,42,69)(16,43,70)(17,44,71)(18,45,72)(19,46,73)(20,47,74)(21,48,75)(22,49,76)(23,50,77)(24,51,78)(25,52,79)(26,53,80)(27,54,81)(82,136,109)(83,137,110)(84,138,111)(85,139,112)(86,140,113)(87,141,114)(88,142,115)(89,143,116)(90,144,117)(91,145,118)(92,146,119)(93,147,120)(94,148,121)(95,149,122)(96,150,123)(97,151,124)(98,152,125)(99,153,126)(100,154,127)(101,155,128)(102,156,129)(103,157,130)(104,158,131)(105,159,132)(106,160,133)(107,161,134)(108,162,135), (1,135)(2,136)(3,137)(4,138)(5,139)(6,140)(7,141)(8,142)(9,143)(10,144)(11,145)(12,146)(13,147)(14,148)(15,149)(16,150)(17,151)(18,152)(19,153)(20,154)(21,155)(22,156)(23,157)(24,158)(25,159)(26,160)(27,161)(28,162)(29,82)(30,83)(31,84)(32,85)(33,86)(34,87)(35,88)(36,89)(37,90)(38,91)(39,92)(40,93)(41,94)(42,95)(43,96)(44,97)(45,98)(46,99)(47,100)(48,101)(49,102)(50,103)(51,104)(52,105)(53,106)(54,107)(55,108)(56,109)(57,110)(58,111)(59,112)(60,113)(61,114)(62,115)(63,116)(64,117)(65,118)(66,119)(67,120)(68,121)(69,122)(70,123)(71,124)(72,125)(73,126)(74,127)(75,128)(76,129)(77,130)(78,131)(79,132)(80,133)(81,134) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162)], [(1,28,55),(2,29,56),(3,30,57),(4,31,58),(5,32,59),(6,33,60),(7,34,61),(8,35,62),(9,36,63),(10,37,64),(11,38,65),(12,39,66),(13,40,67),(14,41,68),(15,42,69),(16,43,70),(17,44,71),(18,45,72),(19,46,73),(20,47,74),(21,48,75),(22,49,76),(23,50,77),(24,51,78),(25,52,79),(26,53,80),(27,54,81),(82,136,109),(83,137,110),(84,138,111),(85,139,112),(86,140,113),(87,141,114),(88,142,115),(89,143,116),(90,144,117),(91,145,118),(92,146,119),(93,147,120),(94,148,121),(95,149,122),(96,150,123),(97,151,124),(98,152,125),(99,153,126),(100,154,127),(101,155,128),(102,156,129),(103,157,130),(104,158,131),(105,159,132),(106,160,133),(107,161,134),(108,162,135)], [(1,135),(2,136),(3,137),(4,138),(5,139),(6,140),(7,141),(8,142),(9,143),(10,144),(11,145),(12,146),(13,147),(14,148),(15,149),(16,150),(17,151),(18,152),(19,153),(20,154),(21,155),(22,156),(23,157),(24,158),(25,159),(26,160),(27,161),(28,162),(29,82),(30,83),(31,84),(32,85),(33,86),(34,87),(35,88),(36,89),(37,90),(38,91),(39,92),(40,93),(41,94),(42,95),(43,96),(44,97),(45,98),(46,99),(47,100),(48,101),(49,102),(50,103),(51,104),(52,105),(53,106),(54,107),(55,108),(56,109),(57,110),(58,111),(59,112),(60,113),(61,114),(62,115),(63,116),(64,117),(65,118),(66,119),(67,120),(68,121),(69,122),(70,123),(71,124),(72,125),(73,126),(74,127),(75,128),(76,129),(77,130),(78,131),(79,132),(80,133),(81,134)]])
243 conjugacy classes
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 6A | 6B | 9A | ··· | 9F | 9G | ··· | 9L | 18A | ··· | 18F | 27A | ··· | 27R | 27S | ··· | 27AJ | 54A | ··· | 54R | 81A | ··· | 81BB | 81BC | ··· | 81DD | 162A | ··· | 162BB |
order | 1 | 2 | 3 | 3 | 3 | 3 | 3 | 6 | 6 | 9 | ··· | 9 | 9 | ··· | 9 | 18 | ··· | 18 | 27 | ··· | 27 | 27 | ··· | 27 | 54 | ··· | 54 | 81 | ··· | 81 | 81 | ··· | 81 | 162 | ··· | 162 |
size | 1 | 3 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 1 | ··· | 1 | 2 | ··· | 2 | 3 | ··· | 3 | 1 | ··· | 1 | 2 | ··· | 2 | 3 | ··· | 3 | 1 | ··· | 1 | 2 | ··· | 2 | 3 | ··· | 3 |
243 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | ||||||||||||
image | C1 | C2 | C3 | C6 | C9 | C18 | C27 | C54 | C81 | C162 | S3 | C3×S3 | S3×C9 | S3×C27 | S3×C81 |
kernel | S3×C81 | C3×C81 | S3×C27 | C3×C27 | S3×C9 | C3×C9 | C3×S3 | C32 | S3 | C3 | C81 | C27 | C9 | C3 | C1 |
# reps | 1 | 1 | 2 | 2 | 6 | 6 | 18 | 18 | 54 | 54 | 1 | 2 | 6 | 18 | 54 |
Matrix representation of S3×C81 ►in GL2(𝔽163) generated by
131 | 0 |
0 | 131 |
104 | 0 |
0 | 58 |
0 | 1 |
1 | 0 |
G:=sub<GL(2,GF(163))| [131,0,0,131],[104,0,0,58],[0,1,1,0] >;
S3×C81 in GAP, Magma, Sage, TeX
S_3\times C_{81}
% in TeX
G:=Group("S3xC81");
// GroupNames label
G:=SmallGroup(486,33);
// by ID
G=gap.SmallGroup(486,33);
# by ID
G:=PCGroup([6,-2,-3,-3,-3,-3,-3,43,68,93,11669]);
// Polycyclic
G:=Group<a,b,c|a^81=b^3=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations
Export