extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C9)⋊1(C3×C6) = C34.S3 | φ: C3×C6/C1 → C3×C6 ⊆ Aut C3×C9 | 27 | | (C3xC9):1(C3xC6) | 486,105 |
(C3×C9)⋊2(C3×C6) = C9⋊S3⋊C32 | φ: C3×C6/C1 → C3×C6 ⊆ Aut C3×C9 | 27 | 18+ | (C3xC9):2(C3xC6) | 486,129 |
(C3×C9)⋊3(C3×C6) = He3.(C3×S3) | φ: C3×C6/C1 → C3×C6 ⊆ Aut C3×C9 | 27 | 18+ | (C3xC9):3(C3xC6) | 486,131 |
(C3×C9)⋊4(C3×C6) = 3- 1+4⋊C2 | φ: C3×C6/C1 → C3×C6 ⊆ Aut C3×C9 | 27 | 18+ | (C3xC9):4(C3xC6) | 486,238 |
(C3×C9)⋊5(C3×C6) = C2×C34.C3 | φ: C3×C6/C2 → C32 ⊆ Aut C3×C9 | 54 | | (C3xC9):5(C3xC6) | 486,197 |
(C3×C9)⋊6(C3×C6) = C2×He3.C32 | φ: C3×C6/C2 → C32 ⊆ Aut C3×C9 | 54 | 9 | (C3xC9):6(C3xC6) | 486,216 |
(C3×C9)⋊7(C3×C6) = C2×He3⋊C32 | φ: C3×C6/C2 → C32 ⊆ Aut C3×C9 | 54 | 9 | (C3xC9):7(C3xC6) | 486,217 |
(C3×C9)⋊8(C3×C6) = C2×3- 1+4 | φ: C3×C6/C2 → C32 ⊆ Aut C3×C9 | 54 | 9 | (C3xC9):8(C3xC6) | 486,255 |
(C3×C9)⋊9(C3×C6) = C3×C32⋊D9 | φ: C3×C6/C3 → C6 ⊆ Aut C3×C9 | 54 | | (C3xC9):9(C3xC6) | 486,94 |
(C3×C9)⋊10(C3×C6) = C3×He3.S3 | φ: C3×C6/C3 → C6 ⊆ Aut C3×C9 | 54 | 6 | (C3xC9):10(C3xC6) | 486,119 |
(C3×C9)⋊11(C3×C6) = C3×He3.2S3 | φ: C3×C6/C3 → C6 ⊆ Aut C3×C9 | 54 | 6 | (C3xC9):11(C3xC6) | 486,122 |
(C3×C9)⋊12(C3×C6) = C32×C9⋊C6 | φ: C3×C6/C3 → C6 ⊆ Aut C3×C9 | 54 | | (C3xC9):12(C3xC6) | 486,224 |
(C3×C9)⋊13(C3×C6) = C3×C33.S3 | φ: C3×C6/C3 → C6 ⊆ Aut C3×C9 | 54 | | (C3xC9):13(C3xC6) | 486,232 |
(C3×C9)⋊14(C3×C6) = C3×He3.4S3 | φ: C3×C6/C3 → C6 ⊆ Aut C3×C9 | 54 | 6 | (C3xC9):14(C3xC6) | 486,234 |
(C3×C9)⋊15(C3×C6) = C3×S3×3- 1+2 | φ: C3×C6/C3 → C6 ⊆ Aut C3×C9 | 54 | | (C3xC9):15(C3xC6) | 486,225 |
(C3×C9)⋊16(C3×C6) = C6×C32⋊C9 | φ: C3×C6/C6 → C3 ⊆ Aut C3×C9 | 162 | | (C3xC9):16(C3xC6) | 486,191 |
(C3×C9)⋊17(C3×C6) = C6×He3.C3 | φ: C3×C6/C6 → C3 ⊆ Aut C3×C9 | 162 | | (C3xC9):17(C3xC6) | 486,211 |
(C3×C9)⋊18(C3×C6) = C6×He3⋊C3 | φ: C3×C6/C6 → C3 ⊆ Aut C3×C9 | 162 | | (C3xC9):18(C3xC6) | 486,212 |
(C3×C9)⋊19(C3×C6) = C3×C6×3- 1+2 | φ: C3×C6/C6 → C3 ⊆ Aut C3×C9 | 162 | | (C3xC9):19(C3xC6) | 486,252 |
(C3×C9)⋊20(C3×C6) = C6×C9○He3 | φ: C3×C6/C6 → C3 ⊆ Aut C3×C9 | 162 | | (C3xC9):20(C3xC6) | 486,253 |
(C3×C9)⋊21(C3×C6) = S3×C32×C9 | φ: C3×C6/C32 → C2 ⊆ Aut C3×C9 | 162 | | (C3xC9):21(C3xC6) | 486,221 |
(C3×C9)⋊22(C3×C6) = D9×C33 | φ: C3×C6/C32 → C2 ⊆ Aut C3×C9 | 162 | | (C3xC9):22(C3xC6) | 486,220 |
(C3×C9)⋊23(C3×C6) = C32×C9⋊S3 | φ: C3×C6/C32 → C2 ⊆ Aut C3×C9 | 54 | | (C3xC9):23(C3xC6) | 486,227 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C9).1(C3×C6) = C2×C27⋊C9 | φ: C3×C6/C2 → C32 ⊆ Aut C3×C9 | 54 | 9 | (C3xC9).1(C3xC6) | 486,82 |
(C3×C9).2(C3×C6) = C2×C32.He3 | φ: C3×C6/C2 → C32 ⊆ Aut C3×C9 | 54 | 9 | (C3xC9).2(C3xC6) | 486,88 |
(C3×C9).3(C3×C6) = C2×C32.5He3 | φ: C3×C6/C2 → C32 ⊆ Aut C3×C9 | 54 | 9 | (C3xC9).3(C3xC6) | 486,89 |
(C3×C9).4(C3×C6) = C2×C32.6He3 | φ: C3×C6/C2 → C32 ⊆ Aut C3×C9 | 54 | 9 | (C3xC9).4(C3xC6) | 486,90 |
(C3×C9).5(C3×C6) = C2×C9⋊He3 | φ: C3×C6/C2 → C32 ⊆ Aut C3×C9 | 162 | | (C3xC9).5(C3xC6) | 486,198 |
(C3×C9).6(C3×C6) = C2×C9⋊3- 1+2 | φ: C3×C6/C2 → C32 ⊆ Aut C3×C9 | 162 | | (C3xC9).6(C3xC6) | 486,200 |
(C3×C9).7(C3×C6) = C2×C92⋊9C3 | φ: C3×C6/C2 → C32 ⊆ Aut C3×C9 | 162 | | (C3xC9).7(C3xC6) | 486,206 |
(C3×C9).8(C3×C6) = C2×C32.C33 | φ: C3×C6/C2 → C32 ⊆ Aut C3×C9 | 54 | 9 | (C3xC9).8(C3xC6) | 486,218 |
(C3×C9).9(C3×C6) = C2×C9.2He3 | φ: C3×C6/C2 → C32 ⊆ Aut C3×C9 | 54 | 9 | (C3xC9).9(C3xC6) | 486,219 |
(C3×C9).10(C3×C6) = C3×C9⋊C18 | φ: C3×C6/C3 → C6 ⊆ Aut C3×C9 | 54 | | (C3xC9).10(C3xC6) | 486,96 |
(C3×C9).11(C3×C6) = C9×C9⋊C6 | φ: C3×C6/C3 → C6 ⊆ Aut C3×C9 | 54 | 6 | (C3xC9).11(C3xC6) | 486,100 |
(C3×C9).12(C3×C6) = D9⋊He3 | φ: C3×C6/C3 → C6 ⊆ Aut C3×C9 | 54 | 6 | (C3xC9).12(C3xC6) | 486,106 |
(C3×C9).13(C3×C6) = D9⋊3- 1+2 | φ: C3×C6/C3 → C6 ⊆ Aut C3×C9 | 54 | 6 | (C3xC9).13(C3xC6) | 486,108 |
(C3×C9).14(C3×C6) = C92⋊7C6 | φ: C3×C6/C3 → C6 ⊆ Aut C3×C9 | 54 | 6 | (C3xC9).14(C3xC6) | 486,109 |
(C3×C9).15(C3×C6) = C92⋊8C6 | φ: C3×C6/C3 → C6 ⊆ Aut C3×C9 | 18 | 6 | (C3xC9).15(C3xC6) | 486,110 |
(C3×C9).16(C3×C6) = S3×C9○He3 | φ: C3×C6/C3 → C6 ⊆ Aut C3×C9 | 54 | 6 | (C3xC9).16(C3xC6) | 486,226 |
(C3×C9).17(C3×C6) = C2×C92⋊C3 | φ: C3×C6/C6 → C3 ⊆ Aut C3×C9 | 54 | 3 | (C3xC9).17(C3xC6) | 486,85 |
(C3×C9).18(C3×C6) = C2×C92⋊2C3 | φ: C3×C6/C6 → C3 ⊆ Aut C3×C9 | 54 | 3 | (C3xC9).18(C3xC6) | 486,86 |
(C3×C9).19(C3×C6) = C2×C92.C3 | φ: C3×C6/C6 → C3 ⊆ Aut C3×C9 | 54 | 3 | (C3xC9).19(C3xC6) | 486,87 |
(C3×C9).20(C3×C6) = C6×C9⋊C9 | φ: C3×C6/C6 → C3 ⊆ Aut C3×C9 | 486 | | (C3xC9).20(C3xC6) | 486,192 |
(C3×C9).21(C3×C6) = C2×C92⋊3C3 | φ: C3×C6/C6 → C3 ⊆ Aut C3×C9 | 162 | | (C3xC9).21(C3xC6) | 486,193 |
(C3×C9).22(C3×C6) = C18×He3 | φ: C3×C6/C6 → C3 ⊆ Aut C3×C9 | 162 | | (C3xC9).22(C3xC6) | 486,194 |
(C3×C9).23(C3×C6) = C18×3- 1+2 | φ: C3×C6/C6 → C3 ⊆ Aut C3×C9 | 162 | | (C3xC9).23(C3xC6) | 486,195 |
(C3×C9).24(C3×C6) = C2×C32.23C33 | φ: C3×C6/C6 → C3 ⊆ Aut C3×C9 | 162 | | (C3xC9).24(C3xC6) | 486,199 |
(C3×C9).25(C3×C6) = C2×C33.31C32 | φ: C3×C6/C6 → C3 ⊆ Aut C3×C9 | 162 | | (C3xC9).25(C3xC6) | 486,201 |
(C3×C9).26(C3×C6) = C2×C92⋊7C3 | φ: C3×C6/C6 → C3 ⊆ Aut C3×C9 | 162 | | (C3xC9).26(C3xC6) | 486,202 |
(C3×C9).27(C3×C6) = C2×C92⋊4C3 | φ: C3×C6/C6 → C3 ⊆ Aut C3×C9 | 162 | | (C3xC9).27(C3xC6) | 486,203 |
(C3×C9).28(C3×C6) = C2×C92⋊5C3 | φ: C3×C6/C6 → C3 ⊆ Aut C3×C9 | 162 | | (C3xC9).28(C3xC6) | 486,204 |
(C3×C9).29(C3×C6) = C2×C92⋊8C3 | φ: C3×C6/C6 → C3 ⊆ Aut C3×C9 | 162 | | (C3xC9).29(C3xC6) | 486,205 |
(C3×C9).30(C3×C6) = C6×C3.He3 | φ: C3×C6/C6 → C3 ⊆ Aut C3×C9 | 162 | | (C3xC9).30(C3xC6) | 486,213 |
(C3×C9).31(C3×C6) = C2×C9.He3 | φ: C3×C6/C6 → C3 ⊆ Aut C3×C9 | 54 | 3 | (C3xC9).31(C3xC6) | 486,214 |
(C3×C9).32(C3×C6) = C2×C9.4He3 | φ: C3×C6/C6 → C3 ⊆ Aut C3×C9 | 54 | 3 | (C3xC9).32(C3xC6) | 486,76 |
(C3×C9).33(C3×C6) = C2×C9.5He3 | φ: C3×C6/C6 → C3 ⊆ Aut C3×C9 | 162 | 3 | (C3xC9).33(C3xC6) | 486,79 |
(C3×C9).34(C3×C6) = C2×C9.6He3 | φ: C3×C6/C6 → C3 ⊆ Aut C3×C9 | 162 | 3 | (C3xC9).34(C3xC6) | 486,80 |
(C3×C9).35(C3×C6) = C6×C27⋊C3 | φ: C3×C6/C6 → C3 ⊆ Aut C3×C9 | 162 | | (C3xC9).35(C3xC6) | 486,208 |
(C3×C9).36(C3×C6) = C2×C27○He3 | φ: C3×C6/C6 → C3 ⊆ Aut C3×C9 | 162 | 3 | (C3xC9).36(C3xC6) | 486,209 |
(C3×C9).37(C3×C6) = S3×C3×C27 | φ: C3×C6/C32 → C2 ⊆ Aut C3×C9 | 162 | | (C3xC9).37(C3xC6) | 486,112 |
(C3×C9).38(C3×C6) = S3×C27⋊C3 | φ: C3×C6/C32 → C2 ⊆ Aut C3×C9 | 54 | 6 | (C3xC9).38(C3xC6) | 486,114 |
(C3×C9).39(C3×C6) = D9×C3×C9 | φ: C3×C6/C32 → C2 ⊆ Aut C3×C9 | 54 | | (C3xC9).39(C3xC6) | 486,91 |
(C3×C9).40(C3×C6) = D9×He3 | φ: C3×C6/C32 → C2 ⊆ Aut C3×C9 | 54 | 6 | (C3xC9).40(C3xC6) | 486,99 |
(C3×C9).41(C3×C6) = D9×3- 1+2 | φ: C3×C6/C32 → C2 ⊆ Aut C3×C9 | 54 | 6 | (C3xC9).41(C3xC6) | 486,101 |
(C3×C9).42(C3×C6) = C2×C27⋊2C9 | central extension (φ=1) | 486 | | (C3xC9).42(C3xC6) | 486,71 |
(C3×C9).43(C3×C6) = C2×C32⋊C27 | central extension (φ=1) | 162 | | (C3xC9).43(C3xC6) | 486,72 |
(C3×C9).44(C3×C6) = C2×C9⋊C27 | central extension (φ=1) | 486 | | (C3xC9).44(C3xC6) | 486,81 |