extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3xC9).1(C3xC6) = C2xC27:C9 | φ: C3xC6/C2 → C32 ⊆ Aut C3xC9 | 54 | 9 | (C3xC9).1(C3xC6) | 486,82 |
(C3xC9).2(C3xC6) = C2xC32.He3 | φ: C3xC6/C2 → C32 ⊆ Aut C3xC9 | 54 | 9 | (C3xC9).2(C3xC6) | 486,88 |
(C3xC9).3(C3xC6) = C2xC32.5He3 | φ: C3xC6/C2 → C32 ⊆ Aut C3xC9 | 54 | 9 | (C3xC9).3(C3xC6) | 486,89 |
(C3xC9).4(C3xC6) = C2xC32.6He3 | φ: C3xC6/C2 → C32 ⊆ Aut C3xC9 | 54 | 9 | (C3xC9).4(C3xC6) | 486,90 |
(C3xC9).5(C3xC6) = C2xC9:He3 | φ: C3xC6/C2 → C32 ⊆ Aut C3xC9 | 162 | | (C3xC9).5(C3xC6) | 486,198 |
(C3xC9).6(C3xC6) = C2xC9:3- 1+2 | φ: C3xC6/C2 → C32 ⊆ Aut C3xC9 | 162 | | (C3xC9).6(C3xC6) | 486,200 |
(C3xC9).7(C3xC6) = C2xC92:9C3 | φ: C3xC6/C2 → C32 ⊆ Aut C3xC9 | 162 | | (C3xC9).7(C3xC6) | 486,206 |
(C3xC9).8(C3xC6) = C2xC32.C33 | φ: C3xC6/C2 → C32 ⊆ Aut C3xC9 | 54 | 9 | (C3xC9).8(C3xC6) | 486,218 |
(C3xC9).9(C3xC6) = C2xC9.2He3 | φ: C3xC6/C2 → C32 ⊆ Aut C3xC9 | 54 | 9 | (C3xC9).9(C3xC6) | 486,219 |
(C3xC9).10(C3xC6) = C3xC9:C18 | φ: C3xC6/C3 → C6 ⊆ Aut C3xC9 | 54 | | (C3xC9).10(C3xC6) | 486,96 |
(C3xC9).11(C3xC6) = C9xC9:C6 | φ: C3xC6/C3 → C6 ⊆ Aut C3xC9 | 54 | 6 | (C3xC9).11(C3xC6) | 486,100 |
(C3xC9).12(C3xC6) = D9:He3 | φ: C3xC6/C3 → C6 ⊆ Aut C3xC9 | 54 | 6 | (C3xC9).12(C3xC6) | 486,106 |
(C3xC9).13(C3xC6) = D9:3- 1+2 | φ: C3xC6/C3 → C6 ⊆ Aut C3xC9 | 54 | 6 | (C3xC9).13(C3xC6) | 486,108 |
(C3xC9).14(C3xC6) = C92:7C6 | φ: C3xC6/C3 → C6 ⊆ Aut C3xC9 | 54 | 6 | (C3xC9).14(C3xC6) | 486,109 |
(C3xC9).15(C3xC6) = C92:8C6 | φ: C3xC6/C3 → C6 ⊆ Aut C3xC9 | 18 | 6 | (C3xC9).15(C3xC6) | 486,110 |
(C3xC9).16(C3xC6) = S3xC9oHe3 | φ: C3xC6/C3 → C6 ⊆ Aut C3xC9 | 54 | 6 | (C3xC9).16(C3xC6) | 486,226 |
(C3xC9).17(C3xC6) = C2xC92:C3 | φ: C3xC6/C6 → C3 ⊆ Aut C3xC9 | 54 | 3 | (C3xC9).17(C3xC6) | 486,85 |
(C3xC9).18(C3xC6) = C2xC92:2C3 | φ: C3xC6/C6 → C3 ⊆ Aut C3xC9 | 54 | 3 | (C3xC9).18(C3xC6) | 486,86 |
(C3xC9).19(C3xC6) = C2xC92.C3 | φ: C3xC6/C6 → C3 ⊆ Aut C3xC9 | 54 | 3 | (C3xC9).19(C3xC6) | 486,87 |
(C3xC9).20(C3xC6) = C6xC9:C9 | φ: C3xC6/C6 → C3 ⊆ Aut C3xC9 | 486 | | (C3xC9).20(C3xC6) | 486,192 |
(C3xC9).21(C3xC6) = C2xC92:3C3 | φ: C3xC6/C6 → C3 ⊆ Aut C3xC9 | 162 | | (C3xC9).21(C3xC6) | 486,193 |
(C3xC9).22(C3xC6) = C18xHe3 | φ: C3xC6/C6 → C3 ⊆ Aut C3xC9 | 162 | | (C3xC9).22(C3xC6) | 486,194 |
(C3xC9).23(C3xC6) = C18x3- 1+2 | φ: C3xC6/C6 → C3 ⊆ Aut C3xC9 | 162 | | (C3xC9).23(C3xC6) | 486,195 |
(C3xC9).24(C3xC6) = C2xC32.23C33 | φ: C3xC6/C6 → C3 ⊆ Aut C3xC9 | 162 | | (C3xC9).24(C3xC6) | 486,199 |
(C3xC9).25(C3xC6) = C2xC33.31C32 | φ: C3xC6/C6 → C3 ⊆ Aut C3xC9 | 162 | | (C3xC9).25(C3xC6) | 486,201 |
(C3xC9).26(C3xC6) = C2xC92:7C3 | φ: C3xC6/C6 → C3 ⊆ Aut C3xC9 | 162 | | (C3xC9).26(C3xC6) | 486,202 |
(C3xC9).27(C3xC6) = C2xC92:4C3 | φ: C3xC6/C6 → C3 ⊆ Aut C3xC9 | 162 | | (C3xC9).27(C3xC6) | 486,203 |
(C3xC9).28(C3xC6) = C2xC92:5C3 | φ: C3xC6/C6 → C3 ⊆ Aut C3xC9 | 162 | | (C3xC9).28(C3xC6) | 486,204 |
(C3xC9).29(C3xC6) = C2xC92:8C3 | φ: C3xC6/C6 → C3 ⊆ Aut C3xC9 | 162 | | (C3xC9).29(C3xC6) | 486,205 |
(C3xC9).30(C3xC6) = C6xC3.He3 | φ: C3xC6/C6 → C3 ⊆ Aut C3xC9 | 162 | | (C3xC9).30(C3xC6) | 486,213 |
(C3xC9).31(C3xC6) = C2xC9.He3 | φ: C3xC6/C6 → C3 ⊆ Aut C3xC9 | 54 | 3 | (C3xC9).31(C3xC6) | 486,214 |
(C3xC9).32(C3xC6) = C2xC9.4He3 | φ: C3xC6/C6 → C3 ⊆ Aut C3xC9 | 54 | 3 | (C3xC9).32(C3xC6) | 486,76 |
(C3xC9).33(C3xC6) = C2xC9.5He3 | φ: C3xC6/C6 → C3 ⊆ Aut C3xC9 | 162 | 3 | (C3xC9).33(C3xC6) | 486,79 |
(C3xC9).34(C3xC6) = C2xC9.6He3 | φ: C3xC6/C6 → C3 ⊆ Aut C3xC9 | 162 | 3 | (C3xC9).34(C3xC6) | 486,80 |
(C3xC9).35(C3xC6) = C6xC27:C3 | φ: C3xC6/C6 → C3 ⊆ Aut C3xC9 | 162 | | (C3xC9).35(C3xC6) | 486,208 |
(C3xC9).36(C3xC6) = C2xC27oHe3 | φ: C3xC6/C6 → C3 ⊆ Aut C3xC9 | 162 | 3 | (C3xC9).36(C3xC6) | 486,209 |
(C3xC9).37(C3xC6) = S3xC3xC27 | φ: C3xC6/C32 → C2 ⊆ Aut C3xC9 | 162 | | (C3xC9).37(C3xC6) | 486,112 |
(C3xC9).38(C3xC6) = S3xC27:C3 | φ: C3xC6/C32 → C2 ⊆ Aut C3xC9 | 54 | 6 | (C3xC9).38(C3xC6) | 486,114 |
(C3xC9).39(C3xC6) = D9xC3xC9 | φ: C3xC6/C32 → C2 ⊆ Aut C3xC9 | 54 | | (C3xC9).39(C3xC6) | 486,91 |
(C3xC9).40(C3xC6) = D9xHe3 | φ: C3xC6/C32 → C2 ⊆ Aut C3xC9 | 54 | 6 | (C3xC9).40(C3xC6) | 486,99 |
(C3xC9).41(C3xC6) = D9x3- 1+2 | φ: C3xC6/C32 → C2 ⊆ Aut C3xC9 | 54 | 6 | (C3xC9).41(C3xC6) | 486,101 |
(C3xC9).42(C3xC6) = C2xC27:2C9 | central extension (φ=1) | 486 | | (C3xC9).42(C3xC6) | 486,71 |
(C3xC9).43(C3xC6) = C2xC32:C27 | central extension (φ=1) | 162 | | (C3xC9).43(C3xC6) | 486,72 |
(C3xC9).44(C3xC6) = C2xC9:C27 | central extension (φ=1) | 486 | | (C3xC9).44(C3xC6) | 486,81 |