Extensions 1→N→G→Q→1 with N=C3xC9 and Q=C3xC6

Direct product G=NxQ with N=C3xC9 and Q=C3xC6
dρLabelID
C33xC18486C3^3xC18486,250

Semidirect products G=N:Q with N=C3xC9 and Q=C3xC6
extensionφ:Q→Aut NdρLabelID
(C3xC9):1(C3xC6) = C34.S3φ: C3xC6/C1C3xC6 ⊆ Aut C3xC927(C3xC9):1(C3xC6)486,105
(C3xC9):2(C3xC6) = C9:S3:C32φ: C3xC6/C1C3xC6 ⊆ Aut C3xC92718+(C3xC9):2(C3xC6)486,129
(C3xC9):3(C3xC6) = He3.(C3xS3)φ: C3xC6/C1C3xC6 ⊆ Aut C3xC92718+(C3xC9):3(C3xC6)486,131
(C3xC9):4(C3xC6) = 3- 1+4:C2φ: C3xC6/C1C3xC6 ⊆ Aut C3xC92718+(C3xC9):4(C3xC6)486,238
(C3xC9):5(C3xC6) = C2xC34.C3φ: C3xC6/C2C32 ⊆ Aut C3xC954(C3xC9):5(C3xC6)486,197
(C3xC9):6(C3xC6) = C2xHe3.C32φ: C3xC6/C2C32 ⊆ Aut C3xC9549(C3xC9):6(C3xC6)486,216
(C3xC9):7(C3xC6) = C2xHe3:C32φ: C3xC6/C2C32 ⊆ Aut C3xC9549(C3xC9):7(C3xC6)486,217
(C3xC9):8(C3xC6) = C2x3- 1+4φ: C3xC6/C2C32 ⊆ Aut C3xC9549(C3xC9):8(C3xC6)486,255
(C3xC9):9(C3xC6) = C3xC32:D9φ: C3xC6/C3C6 ⊆ Aut C3xC954(C3xC9):9(C3xC6)486,94
(C3xC9):10(C3xC6) = C3xHe3.S3φ: C3xC6/C3C6 ⊆ Aut C3xC9546(C3xC9):10(C3xC6)486,119
(C3xC9):11(C3xC6) = C3xHe3.2S3φ: C3xC6/C3C6 ⊆ Aut C3xC9546(C3xC9):11(C3xC6)486,122
(C3xC9):12(C3xC6) = C32xC9:C6φ: C3xC6/C3C6 ⊆ Aut C3xC954(C3xC9):12(C3xC6)486,224
(C3xC9):13(C3xC6) = C3xC33.S3φ: C3xC6/C3C6 ⊆ Aut C3xC954(C3xC9):13(C3xC6)486,232
(C3xC9):14(C3xC6) = C3xHe3.4S3φ: C3xC6/C3C6 ⊆ Aut C3xC9546(C3xC9):14(C3xC6)486,234
(C3xC9):15(C3xC6) = C3xS3x3- 1+2φ: C3xC6/C3C6 ⊆ Aut C3xC954(C3xC9):15(C3xC6)486,225
(C3xC9):16(C3xC6) = C6xC32:C9φ: C3xC6/C6C3 ⊆ Aut C3xC9162(C3xC9):16(C3xC6)486,191
(C3xC9):17(C3xC6) = C6xHe3.C3φ: C3xC6/C6C3 ⊆ Aut C3xC9162(C3xC9):17(C3xC6)486,211
(C3xC9):18(C3xC6) = C6xHe3:C3φ: C3xC6/C6C3 ⊆ Aut C3xC9162(C3xC9):18(C3xC6)486,212
(C3xC9):19(C3xC6) = C3xC6x3- 1+2φ: C3xC6/C6C3 ⊆ Aut C3xC9162(C3xC9):19(C3xC6)486,252
(C3xC9):20(C3xC6) = C6xC9oHe3φ: C3xC6/C6C3 ⊆ Aut C3xC9162(C3xC9):20(C3xC6)486,253
(C3xC9):21(C3xC6) = S3xC32xC9φ: C3xC6/C32C2 ⊆ Aut C3xC9162(C3xC9):21(C3xC6)486,221
(C3xC9):22(C3xC6) = D9xC33φ: C3xC6/C32C2 ⊆ Aut C3xC9162(C3xC9):22(C3xC6)486,220
(C3xC9):23(C3xC6) = C32xC9:S3φ: C3xC6/C32C2 ⊆ Aut C3xC954(C3xC9):23(C3xC6)486,227

Non-split extensions G=N.Q with N=C3xC9 and Q=C3xC6
extensionφ:Q→Aut NdρLabelID
(C3xC9).1(C3xC6) = C2xC27:C9φ: C3xC6/C2C32 ⊆ Aut C3xC9549(C3xC9).1(C3xC6)486,82
(C3xC9).2(C3xC6) = C2xC32.He3φ: C3xC6/C2C32 ⊆ Aut C3xC9549(C3xC9).2(C3xC6)486,88
(C3xC9).3(C3xC6) = C2xC32.5He3φ: C3xC6/C2C32 ⊆ Aut C3xC9549(C3xC9).3(C3xC6)486,89
(C3xC9).4(C3xC6) = C2xC32.6He3φ: C3xC6/C2C32 ⊆ Aut C3xC9549(C3xC9).4(C3xC6)486,90
(C3xC9).5(C3xC6) = C2xC9:He3φ: C3xC6/C2C32 ⊆ Aut C3xC9162(C3xC9).5(C3xC6)486,198
(C3xC9).6(C3xC6) = C2xC9:3- 1+2φ: C3xC6/C2C32 ⊆ Aut C3xC9162(C3xC9).6(C3xC6)486,200
(C3xC9).7(C3xC6) = C2xC92:9C3φ: C3xC6/C2C32 ⊆ Aut C3xC9162(C3xC9).7(C3xC6)486,206
(C3xC9).8(C3xC6) = C2xC32.C33φ: C3xC6/C2C32 ⊆ Aut C3xC9549(C3xC9).8(C3xC6)486,218
(C3xC9).9(C3xC6) = C2xC9.2He3φ: C3xC6/C2C32 ⊆ Aut C3xC9549(C3xC9).9(C3xC6)486,219
(C3xC9).10(C3xC6) = C3xC9:C18φ: C3xC6/C3C6 ⊆ Aut C3xC954(C3xC9).10(C3xC6)486,96
(C3xC9).11(C3xC6) = C9xC9:C6φ: C3xC6/C3C6 ⊆ Aut C3xC9546(C3xC9).11(C3xC6)486,100
(C3xC9).12(C3xC6) = D9:He3φ: C3xC6/C3C6 ⊆ Aut C3xC9546(C3xC9).12(C3xC6)486,106
(C3xC9).13(C3xC6) = D9:3- 1+2φ: C3xC6/C3C6 ⊆ Aut C3xC9546(C3xC9).13(C3xC6)486,108
(C3xC9).14(C3xC6) = C92:7C6φ: C3xC6/C3C6 ⊆ Aut C3xC9546(C3xC9).14(C3xC6)486,109
(C3xC9).15(C3xC6) = C92:8C6φ: C3xC6/C3C6 ⊆ Aut C3xC9186(C3xC9).15(C3xC6)486,110
(C3xC9).16(C3xC6) = S3xC9oHe3φ: C3xC6/C3C6 ⊆ Aut C3xC9546(C3xC9).16(C3xC6)486,226
(C3xC9).17(C3xC6) = C2xC92:C3φ: C3xC6/C6C3 ⊆ Aut C3xC9543(C3xC9).17(C3xC6)486,85
(C3xC9).18(C3xC6) = C2xC92:2C3φ: C3xC6/C6C3 ⊆ Aut C3xC9543(C3xC9).18(C3xC6)486,86
(C3xC9).19(C3xC6) = C2xC92.C3φ: C3xC6/C6C3 ⊆ Aut C3xC9543(C3xC9).19(C3xC6)486,87
(C3xC9).20(C3xC6) = C6xC9:C9φ: C3xC6/C6C3 ⊆ Aut C3xC9486(C3xC9).20(C3xC6)486,192
(C3xC9).21(C3xC6) = C2xC92:3C3φ: C3xC6/C6C3 ⊆ Aut C3xC9162(C3xC9).21(C3xC6)486,193
(C3xC9).22(C3xC6) = C18xHe3φ: C3xC6/C6C3 ⊆ Aut C3xC9162(C3xC9).22(C3xC6)486,194
(C3xC9).23(C3xC6) = C18x3- 1+2φ: C3xC6/C6C3 ⊆ Aut C3xC9162(C3xC9).23(C3xC6)486,195
(C3xC9).24(C3xC6) = C2xC32.23C33φ: C3xC6/C6C3 ⊆ Aut C3xC9162(C3xC9).24(C3xC6)486,199
(C3xC9).25(C3xC6) = C2xC33.31C32φ: C3xC6/C6C3 ⊆ Aut C3xC9162(C3xC9).25(C3xC6)486,201
(C3xC9).26(C3xC6) = C2xC92:7C3φ: C3xC6/C6C3 ⊆ Aut C3xC9162(C3xC9).26(C3xC6)486,202
(C3xC9).27(C3xC6) = C2xC92:4C3φ: C3xC6/C6C3 ⊆ Aut C3xC9162(C3xC9).27(C3xC6)486,203
(C3xC9).28(C3xC6) = C2xC92:5C3φ: C3xC6/C6C3 ⊆ Aut C3xC9162(C3xC9).28(C3xC6)486,204
(C3xC9).29(C3xC6) = C2xC92:8C3φ: C3xC6/C6C3 ⊆ Aut C3xC9162(C3xC9).29(C3xC6)486,205
(C3xC9).30(C3xC6) = C6xC3.He3φ: C3xC6/C6C3 ⊆ Aut C3xC9162(C3xC9).30(C3xC6)486,213
(C3xC9).31(C3xC6) = C2xC9.He3φ: C3xC6/C6C3 ⊆ Aut C3xC9543(C3xC9).31(C3xC6)486,214
(C3xC9).32(C3xC6) = C2xC9.4He3φ: C3xC6/C6C3 ⊆ Aut C3xC9543(C3xC9).32(C3xC6)486,76
(C3xC9).33(C3xC6) = C2xC9.5He3φ: C3xC6/C6C3 ⊆ Aut C3xC91623(C3xC9).33(C3xC6)486,79
(C3xC9).34(C3xC6) = C2xC9.6He3φ: C3xC6/C6C3 ⊆ Aut C3xC91623(C3xC9).34(C3xC6)486,80
(C3xC9).35(C3xC6) = C6xC27:C3φ: C3xC6/C6C3 ⊆ Aut C3xC9162(C3xC9).35(C3xC6)486,208
(C3xC9).36(C3xC6) = C2xC27oHe3φ: C3xC6/C6C3 ⊆ Aut C3xC91623(C3xC9).36(C3xC6)486,209
(C3xC9).37(C3xC6) = S3xC3xC27φ: C3xC6/C32C2 ⊆ Aut C3xC9162(C3xC9).37(C3xC6)486,112
(C3xC9).38(C3xC6) = S3xC27:C3φ: C3xC6/C32C2 ⊆ Aut C3xC9546(C3xC9).38(C3xC6)486,114
(C3xC9).39(C3xC6) = D9xC3xC9φ: C3xC6/C32C2 ⊆ Aut C3xC954(C3xC9).39(C3xC6)486,91
(C3xC9).40(C3xC6) = D9xHe3φ: C3xC6/C32C2 ⊆ Aut C3xC9546(C3xC9).40(C3xC6)486,99
(C3xC9).41(C3xC6) = D9x3- 1+2φ: C3xC6/C32C2 ⊆ Aut C3xC9546(C3xC9).41(C3xC6)486,101
(C3xC9).42(C3xC6) = C2xC27:2C9central extension (φ=1)486(C3xC9).42(C3xC6)486,71
(C3xC9).43(C3xC6) = C2xC32:C27central extension (φ=1)162(C3xC9).43(C3xC6)486,72
(C3xC9).44(C3xC6) = C2xC9:C27central extension (φ=1)486(C3xC9).44(C3xC6)486,81

׿
x
:
Z
F
o
wr
Q
<