Copied to
clipboard

G = C4×5- 1+2order 500 = 22·53

Direct product of C4 and 5- 1+2

direct product, metacyclic, nilpotent (class 2), monomial, 5-elementary

Aliases: C4×5- 1+2, C100⋊C5, C253C20, C52.C20, C50.2C10, C20.2C52, (C5×C20).C5, C5.2(C5×C20), C10.3(C5×C10), (C5×C10).3C10, C2.(C2×5- 1+2), (C2×5- 1+2).2C2, SmallGroup(500,14)

Series: Derived Chief Lower central Upper central

C1C5 — C4×5- 1+2
C1C5C10C5×C10C2×5- 1+2 — C4×5- 1+2
C1C5 — C4×5- 1+2
C1C20 — C4×5- 1+2

Generators and relations for C4×5- 1+2
 G = < a,b,c | a4=b25=c5=1, ab=ba, ac=ca, cbc-1=b6 >

5C5
5C10
5C20

Smallest permutation representation of C4×5- 1+2
On 100 points
Generators in S100
(1 68 30 84)(2 69 31 85)(3 70 32 86)(4 71 33 87)(5 72 34 88)(6 73 35 89)(7 74 36 90)(8 75 37 91)(9 51 38 92)(10 52 39 93)(11 53 40 94)(12 54 41 95)(13 55 42 96)(14 56 43 97)(15 57 44 98)(16 58 45 99)(17 59 46 100)(18 60 47 76)(19 61 48 77)(20 62 49 78)(21 63 50 79)(22 64 26 80)(23 65 27 81)(24 66 28 82)(25 67 29 83)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25)(26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)
(1 6 11 16 21)(3 23 18 13 8)(4 19 9 24 14)(5 15 25 10 20)(27 47 42 37 32)(28 43 33 48 38)(29 39 49 34 44)(30 35 40 45 50)(51 66 56 71 61)(52 62 72 57 67)(53 58 63 68 73)(55 75 70 65 60)(76 96 91 86 81)(77 92 82 97 87)(78 88 98 83 93)(79 84 89 94 99)

G:=sub<Sym(100)| (1,68,30,84)(2,69,31,85)(3,70,32,86)(4,71,33,87)(5,72,34,88)(6,73,35,89)(7,74,36,90)(8,75,37,91)(9,51,38,92)(10,52,39,93)(11,53,40,94)(12,54,41,95)(13,55,42,96)(14,56,43,97)(15,57,44,98)(16,58,45,99)(17,59,46,100)(18,60,47,76)(19,61,48,77)(20,62,49,78)(21,63,50,79)(22,64,26,80)(23,65,27,81)(24,66,28,82)(25,67,29,83), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100), (1,6,11,16,21)(3,23,18,13,8)(4,19,9,24,14)(5,15,25,10,20)(27,47,42,37,32)(28,43,33,48,38)(29,39,49,34,44)(30,35,40,45,50)(51,66,56,71,61)(52,62,72,57,67)(53,58,63,68,73)(55,75,70,65,60)(76,96,91,86,81)(77,92,82,97,87)(78,88,98,83,93)(79,84,89,94,99)>;

G:=Group( (1,68,30,84)(2,69,31,85)(3,70,32,86)(4,71,33,87)(5,72,34,88)(6,73,35,89)(7,74,36,90)(8,75,37,91)(9,51,38,92)(10,52,39,93)(11,53,40,94)(12,54,41,95)(13,55,42,96)(14,56,43,97)(15,57,44,98)(16,58,45,99)(17,59,46,100)(18,60,47,76)(19,61,48,77)(20,62,49,78)(21,63,50,79)(22,64,26,80)(23,65,27,81)(24,66,28,82)(25,67,29,83), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100), (1,6,11,16,21)(3,23,18,13,8)(4,19,9,24,14)(5,15,25,10,20)(27,47,42,37,32)(28,43,33,48,38)(29,39,49,34,44)(30,35,40,45,50)(51,66,56,71,61)(52,62,72,57,67)(53,58,63,68,73)(55,75,70,65,60)(76,96,91,86,81)(77,92,82,97,87)(78,88,98,83,93)(79,84,89,94,99) );

G=PermutationGroup([[(1,68,30,84),(2,69,31,85),(3,70,32,86),(4,71,33,87),(5,72,34,88),(6,73,35,89),(7,74,36,90),(8,75,37,91),(9,51,38,92),(10,52,39,93),(11,53,40,94),(12,54,41,95),(13,55,42,96),(14,56,43,97),(15,57,44,98),(16,58,45,99),(17,59,46,100),(18,60,47,76),(19,61,48,77),(20,62,49,78),(21,63,50,79),(22,64,26,80),(23,65,27,81),(24,66,28,82),(25,67,29,83)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25),(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)], [(1,6,11,16,21),(3,23,18,13,8),(4,19,9,24,14),(5,15,25,10,20),(27,47,42,37,32),(28,43,33,48,38),(29,39,49,34,44),(30,35,40,45,50),(51,66,56,71,61),(52,62,72,57,67),(53,58,63,68,73),(55,75,70,65,60),(76,96,91,86,81),(77,92,82,97,87),(78,88,98,83,93),(79,84,89,94,99)]])

116 conjugacy classes

class 1  2 4A4B5A5B5C5D5E5F5G5H10A10B10C10D10E10F10G10H20A···20H20I···20P25A···25T50A···50T100A···100AN
order124455555555101010101010101020···2020···2025···2550···50100···100
size111111115555111155551···15···55···55···55···5

116 irreducible representations

dim111111111555
type++
imageC1C2C4C5C5C10C10C20C205- 1+2C2×5- 1+2C4×5- 1+2
kernelC4×5- 1+2C2×5- 1+25- 1+2C100C5×C20C50C5×C10C25C52C4C2C1
# reps112204204408448

Matrix representation of C4×5- 1+2 in GL5(𝔽101)

910000
091000
009100
000910
000091
,
957102214
00100
000870
000095
831714656
,
95652236
036000
008700
000840
00001

G:=sub<GL(5,GF(101))| [91,0,0,0,0,0,91,0,0,0,0,0,91,0,0,0,0,0,91,0,0,0,0,0,91],[95,0,0,0,83,71,0,0,0,17,0,1,0,0,14,22,0,87,0,65,14,0,0,95,6],[95,0,0,0,0,6,36,0,0,0,5,0,87,0,0,22,0,0,84,0,36,0,0,0,1] >;

C4×5- 1+2 in GAP, Magma, Sage, TeX

C_4\times 5_-^{1+2}
% in TeX

G:=Group("C4xES-(5,1)");
// GroupNames label

G:=SmallGroup(500,14);
// by ID

G=gap.SmallGroup(500,14);
# by ID

G:=PCGroup([5,-2,-5,-5,-2,-5,250,506,3082]);
// Polycyclic

G:=Group<a,b,c|a^4=b^25=c^5=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^6>;
// generators/relations

Export

Subgroup lattice of C4×5- 1+2 in TeX

׿
×
𝔽