Extensions 1→N→G→Q→1 with N=C4 and Q=D62

Direct product G=N×Q with N=C4 and Q=D62
dρLabelID
C2×C4×D31248C2xC4xD31496,28

Semidirect products G=N:Q with N=C4 and Q=D62
extensionφ:Q→Aut NdρLabelID
C41D62 = D4×D31φ: D62/D31C2 ⊆ Aut C41244+C4:1D62496,31
C42D62 = C2×D124φ: D62/C62C2 ⊆ Aut C4248C4:2D62496,29

Non-split extensions G=N.Q with N=C4 and Q=D62
extensionφ:Q→Aut NdρLabelID
C4.1D62 = D4⋊D31φ: D62/D31C2 ⊆ Aut C42484+C4.1D62496,14
C4.2D62 = D4.D31φ: D62/D31C2 ⊆ Aut C42484-C4.2D62496,15
C4.3D62 = Q8⋊D31φ: D62/D31C2 ⊆ Aut C42484+C4.3D62496,16
C4.4D62 = C31⋊Q16φ: D62/D31C2 ⊆ Aut C44964-C4.4D62496,17
C4.5D62 = D42D31φ: D62/D31C2 ⊆ Aut C42484-C4.5D62496,32
C4.6D62 = Q8×D31φ: D62/D31C2 ⊆ Aut C42484-C4.6D62496,33
C4.7D62 = Q82D31φ: D62/D31C2 ⊆ Aut C42484+C4.7D62496,34
C4.8D62 = C248⋊C2φ: D62/C62C2 ⊆ Aut C42482C4.8D62496,5
C4.9D62 = D248φ: D62/C62C2 ⊆ Aut C42482+C4.9D62496,6
C4.10D62 = Dic124φ: D62/C62C2 ⊆ Aut C44962-C4.10D62496,7
C4.11D62 = C2×Dic62φ: D62/C62C2 ⊆ Aut C4496C4.11D62496,27
C4.12D62 = C8×D31central extension (φ=1)2482C4.12D62496,3
C4.13D62 = C8⋊D31central extension (φ=1)2482C4.13D62496,4
C4.14D62 = C2×C31⋊C8central extension (φ=1)496C4.14D62496,8
C4.15D62 = C4.Dic31central extension (φ=1)2482C4.15D62496,9
C4.16D62 = D1245C2central extension (φ=1)2482C4.16D62496,30

׿
×
𝔽