Copied to
clipboard

G = D4×D31order 496 = 24·31

Direct product of D4 and D31

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D4×D31, C41D62, C124⋊C22, D1243C2, C221D62, D622C22, C62.5C23, Dic311C22, C312(C2×D4), (C2×C62)⋊C22, (C4×D31)⋊1C2, (D4×C31)⋊2C2, C31⋊D41C2, (C22×D31)⋊2C2, C2.6(C22×D31), SmallGroup(496,31)

Series: Derived Chief Lower central Upper central

C1C62 — D4×D31
C1C31C62D62C22×D31 — D4×D31
C31C62 — D4×D31
C1C2D4

Generators and relations for D4×D31
 G = < a,b,c,d | a4=b2=c31=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 820 in 54 conjugacy classes, 25 normal (13 characteristic)
C1, C2, C2, C4, C4, C22, C22, C2×C4, D4, D4, C23, C2×D4, C31, D31, D31, C62, C62, Dic31, C124, D62, D62, D62, C2×C62, C4×D31, D124, C31⋊D4, D4×C31, C22×D31, D4×D31
Quotients: C1, C2, C22, D4, C23, C2×D4, D31, D62, C22×D31, D4×D31

Smallest permutation representation of D4×D31
On 124 points
Generators in S124
(1 106 46 68)(2 107 47 69)(3 108 48 70)(4 109 49 71)(5 110 50 72)(6 111 51 73)(7 112 52 74)(8 113 53 75)(9 114 54 76)(10 115 55 77)(11 116 56 78)(12 117 57 79)(13 118 58 80)(14 119 59 81)(15 120 60 82)(16 121 61 83)(17 122 62 84)(18 123 32 85)(19 124 33 86)(20 94 34 87)(21 95 35 88)(22 96 36 89)(23 97 37 90)(24 98 38 91)(25 99 39 92)(26 100 40 93)(27 101 41 63)(28 102 42 64)(29 103 43 65)(30 104 44 66)(31 105 45 67)
(1 68)(2 69)(3 70)(4 71)(5 72)(6 73)(7 74)(8 75)(9 76)(10 77)(11 78)(12 79)(13 80)(14 81)(15 82)(16 83)(17 84)(18 85)(19 86)(20 87)(21 88)(22 89)(23 90)(24 91)(25 92)(26 93)(27 63)(28 64)(29 65)(30 66)(31 67)(32 123)(33 124)(34 94)(35 95)(36 96)(37 97)(38 98)(39 99)(40 100)(41 101)(42 102)(43 103)(44 104)(45 105)(46 106)(47 107)(48 108)(49 109)(50 110)(51 111)(52 112)(53 113)(54 114)(55 115)(56 116)(57 117)(58 118)(59 119)(60 120)(61 121)(62 122)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31)(32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62)(63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93)(94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124)
(1 31)(2 30)(3 29)(4 28)(5 27)(6 26)(7 25)(8 24)(9 23)(10 22)(11 21)(12 20)(13 19)(14 18)(15 17)(32 59)(33 58)(34 57)(35 56)(36 55)(37 54)(38 53)(39 52)(40 51)(41 50)(42 49)(43 48)(44 47)(45 46)(60 62)(63 72)(64 71)(65 70)(66 69)(67 68)(73 93)(74 92)(75 91)(76 90)(77 89)(78 88)(79 87)(80 86)(81 85)(82 84)(94 117)(95 116)(96 115)(97 114)(98 113)(99 112)(100 111)(101 110)(102 109)(103 108)(104 107)(105 106)(118 124)(119 123)(120 122)

G:=sub<Sym(124)| (1,106,46,68)(2,107,47,69)(3,108,48,70)(4,109,49,71)(5,110,50,72)(6,111,51,73)(7,112,52,74)(8,113,53,75)(9,114,54,76)(10,115,55,77)(11,116,56,78)(12,117,57,79)(13,118,58,80)(14,119,59,81)(15,120,60,82)(16,121,61,83)(17,122,62,84)(18,123,32,85)(19,124,33,86)(20,94,34,87)(21,95,35,88)(22,96,36,89)(23,97,37,90)(24,98,38,91)(25,99,39,92)(26,100,40,93)(27,101,41,63)(28,102,42,64)(29,103,43,65)(30,104,44,66)(31,105,45,67), (1,68)(2,69)(3,70)(4,71)(5,72)(6,73)(7,74)(8,75)(9,76)(10,77)(11,78)(12,79)(13,80)(14,81)(15,82)(16,83)(17,84)(18,85)(19,86)(20,87)(21,88)(22,89)(23,90)(24,91)(25,92)(26,93)(27,63)(28,64)(29,65)(30,66)(31,67)(32,123)(33,124)(34,94)(35,95)(36,96)(37,97)(38,98)(39,99)(40,100)(41,101)(42,102)(43,103)(44,104)(45,105)(46,106)(47,107)(48,108)(49,109)(50,110)(51,111)(52,112)(53,113)(54,114)(55,115)(56,116)(57,117)(58,118)(59,119)(60,120)(61,121)(62,122), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31)(32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62)(63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93)(94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124), (1,31)(2,30)(3,29)(4,28)(5,27)(6,26)(7,25)(8,24)(9,23)(10,22)(11,21)(12,20)(13,19)(14,18)(15,17)(32,59)(33,58)(34,57)(35,56)(36,55)(37,54)(38,53)(39,52)(40,51)(41,50)(42,49)(43,48)(44,47)(45,46)(60,62)(63,72)(64,71)(65,70)(66,69)(67,68)(73,93)(74,92)(75,91)(76,90)(77,89)(78,88)(79,87)(80,86)(81,85)(82,84)(94,117)(95,116)(96,115)(97,114)(98,113)(99,112)(100,111)(101,110)(102,109)(103,108)(104,107)(105,106)(118,124)(119,123)(120,122)>;

G:=Group( (1,106,46,68)(2,107,47,69)(3,108,48,70)(4,109,49,71)(5,110,50,72)(6,111,51,73)(7,112,52,74)(8,113,53,75)(9,114,54,76)(10,115,55,77)(11,116,56,78)(12,117,57,79)(13,118,58,80)(14,119,59,81)(15,120,60,82)(16,121,61,83)(17,122,62,84)(18,123,32,85)(19,124,33,86)(20,94,34,87)(21,95,35,88)(22,96,36,89)(23,97,37,90)(24,98,38,91)(25,99,39,92)(26,100,40,93)(27,101,41,63)(28,102,42,64)(29,103,43,65)(30,104,44,66)(31,105,45,67), (1,68)(2,69)(3,70)(4,71)(5,72)(6,73)(7,74)(8,75)(9,76)(10,77)(11,78)(12,79)(13,80)(14,81)(15,82)(16,83)(17,84)(18,85)(19,86)(20,87)(21,88)(22,89)(23,90)(24,91)(25,92)(26,93)(27,63)(28,64)(29,65)(30,66)(31,67)(32,123)(33,124)(34,94)(35,95)(36,96)(37,97)(38,98)(39,99)(40,100)(41,101)(42,102)(43,103)(44,104)(45,105)(46,106)(47,107)(48,108)(49,109)(50,110)(51,111)(52,112)(53,113)(54,114)(55,115)(56,116)(57,117)(58,118)(59,119)(60,120)(61,121)(62,122), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31)(32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62)(63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93)(94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124), (1,31)(2,30)(3,29)(4,28)(5,27)(6,26)(7,25)(8,24)(9,23)(10,22)(11,21)(12,20)(13,19)(14,18)(15,17)(32,59)(33,58)(34,57)(35,56)(36,55)(37,54)(38,53)(39,52)(40,51)(41,50)(42,49)(43,48)(44,47)(45,46)(60,62)(63,72)(64,71)(65,70)(66,69)(67,68)(73,93)(74,92)(75,91)(76,90)(77,89)(78,88)(79,87)(80,86)(81,85)(82,84)(94,117)(95,116)(96,115)(97,114)(98,113)(99,112)(100,111)(101,110)(102,109)(103,108)(104,107)(105,106)(118,124)(119,123)(120,122) );

G=PermutationGroup([[(1,106,46,68),(2,107,47,69),(3,108,48,70),(4,109,49,71),(5,110,50,72),(6,111,51,73),(7,112,52,74),(8,113,53,75),(9,114,54,76),(10,115,55,77),(11,116,56,78),(12,117,57,79),(13,118,58,80),(14,119,59,81),(15,120,60,82),(16,121,61,83),(17,122,62,84),(18,123,32,85),(19,124,33,86),(20,94,34,87),(21,95,35,88),(22,96,36,89),(23,97,37,90),(24,98,38,91),(25,99,39,92),(26,100,40,93),(27,101,41,63),(28,102,42,64),(29,103,43,65),(30,104,44,66),(31,105,45,67)], [(1,68),(2,69),(3,70),(4,71),(5,72),(6,73),(7,74),(8,75),(9,76),(10,77),(11,78),(12,79),(13,80),(14,81),(15,82),(16,83),(17,84),(18,85),(19,86),(20,87),(21,88),(22,89),(23,90),(24,91),(25,92),(26,93),(27,63),(28,64),(29,65),(30,66),(31,67),(32,123),(33,124),(34,94),(35,95),(36,96),(37,97),(38,98),(39,99),(40,100),(41,101),(42,102),(43,103),(44,104),(45,105),(46,106),(47,107),(48,108),(49,109),(50,110),(51,111),(52,112),(53,113),(54,114),(55,115),(56,116),(57,117),(58,118),(59,119),(60,120),(61,121),(62,122)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31),(32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62),(63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93),(94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124)], [(1,31),(2,30),(3,29),(4,28),(5,27),(6,26),(7,25),(8,24),(9,23),(10,22),(11,21),(12,20),(13,19),(14,18),(15,17),(32,59),(33,58),(34,57),(35,56),(36,55),(37,54),(38,53),(39,52),(40,51),(41,50),(42,49),(43,48),(44,47),(45,46),(60,62),(63,72),(64,71),(65,70),(66,69),(67,68),(73,93),(74,92),(75,91),(76,90),(77,89),(78,88),(79,87),(80,86),(81,85),(82,84),(94,117),(95,116),(96,115),(97,114),(98,113),(99,112),(100,111),(101,110),(102,109),(103,108),(104,107),(105,106),(118,124),(119,123),(120,122)]])

85 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B31A···31O62A···62O62P···62AS124A···124O
order122222224431···3162···6262···62124···124
size1122313162622622···22···24···44···4

85 irreducible representations

dim11111122224
type+++++++++++
imageC1C2C2C2C2C2D4D31D62D62D4×D31
kernelD4×D31C4×D31D124C31⋊D4D4×C31C22×D31D31D4C4C22C1
# reps111212215153015

Matrix representation of D4×D31 in GL4(𝔽373) generated by

372000
037200
0032356
00170341
,
372000
037200
0032356
00126341
,
350100
3912800
0010
0001
,
34636900
1822700
0010
0001
G:=sub<GL(4,GF(373))| [372,0,0,0,0,372,0,0,0,0,32,170,0,0,356,341],[372,0,0,0,0,372,0,0,0,0,32,126,0,0,356,341],[350,39,0,0,1,128,0,0,0,0,1,0,0,0,0,1],[346,182,0,0,369,27,0,0,0,0,1,0,0,0,0,1] >;

D4×D31 in GAP, Magma, Sage, TeX

D_4\times D_{31}
% in TeX

G:=Group("D4xD31");
// GroupNames label

G:=SmallGroup(496,31);
// by ID

G=gap.SmallGroup(496,31);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-31,97,12004]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^31=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽