direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: C4×D11, C44⋊2C2, D22.C2, C4○Dic11, C2.1D22, Dic11⋊2C2, C22.2C22, C11⋊1(C2×C4), SmallGroup(88,4)
Series: Derived ►Chief ►Lower central ►Upper central
C11 — C4×D11 |
Generators and relations for C4×D11
G = < a,b,c | a4=b11=c2=1, ab=ba, ac=ca, cbc=b-1 >
Character table of C4×D11
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 11A | 11B | 11C | 11D | 11E | 22A | 22B | 22C | 22D | 22E | 44A | 44B | 44C | 44D | 44E | 44F | 44G | 44H | 44I | 44J | |
size | 1 | 1 | 11 | 11 | 1 | 1 | 11 | 11 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | -1 | -1 | 1 | i | -i | -i | i | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | i | -i | -i | -i | -i | -i | i | i | i | i | linear of order 4 |
ρ6 | 1 | -1 | 1 | -1 | -i | i | -i | i | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -i | i | i | i | i | i | -i | -i | -i | -i | linear of order 4 |
ρ7 | 1 | -1 | 1 | -1 | i | -i | i | -i | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | i | -i | -i | -i | -i | -i | i | i | i | i | linear of order 4 |
ρ8 | 1 | -1 | -1 | 1 | -i | i | i | -i | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -i | i | i | i | i | i | -i | -i | -i | -i | linear of order 4 |
ρ9 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | ζ118+ζ113 | ζ116+ζ115 | ζ119+ζ112 | ζ1110+ζ11 | ζ117+ζ114 | ζ116+ζ115 | ζ117+ζ114 | ζ119+ζ112 | ζ1110+ζ11 | ζ118+ζ113 | ζ118+ζ113 | ζ118+ζ113 | ζ116+ζ115 | ζ119+ζ112 | ζ1110+ζ11 | ζ117+ζ114 | ζ116+ζ115 | ζ119+ζ112 | ζ1110+ζ11 | ζ117+ζ114 | orthogonal lifted from D11 |
ρ10 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | ζ117+ζ114 | ζ118+ζ113 | ζ1110+ζ11 | ζ116+ζ115 | ζ119+ζ112 | ζ118+ζ113 | ζ119+ζ112 | ζ1110+ζ11 | ζ116+ζ115 | ζ117+ζ114 | -ζ117-ζ114 | -ζ117-ζ114 | -ζ118-ζ113 | -ζ1110-ζ11 | -ζ116-ζ115 | -ζ119-ζ112 | -ζ118-ζ113 | -ζ1110-ζ11 | -ζ116-ζ115 | -ζ119-ζ112 | orthogonal lifted from D22 |
ρ11 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | ζ1110+ζ11 | ζ119+ζ112 | ζ118+ζ113 | ζ117+ζ114 | ζ116+ζ115 | ζ119+ζ112 | ζ116+ζ115 | ζ118+ζ113 | ζ117+ζ114 | ζ1110+ζ11 | -ζ1110-ζ11 | -ζ1110-ζ11 | -ζ119-ζ112 | -ζ118-ζ113 | -ζ117-ζ114 | -ζ116-ζ115 | -ζ119-ζ112 | -ζ118-ζ113 | -ζ117-ζ114 | -ζ116-ζ115 | orthogonal lifted from D22 |
ρ12 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | ζ116+ζ115 | ζ1110+ζ11 | ζ117+ζ114 | ζ119+ζ112 | ζ118+ζ113 | ζ1110+ζ11 | ζ118+ζ113 | ζ117+ζ114 | ζ119+ζ112 | ζ116+ζ115 | -ζ116-ζ115 | -ζ116-ζ115 | -ζ1110-ζ11 | -ζ117-ζ114 | -ζ119-ζ112 | -ζ118-ζ113 | -ζ1110-ζ11 | -ζ117-ζ114 | -ζ119-ζ112 | -ζ118-ζ113 | orthogonal lifted from D22 |
ρ13 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | ζ1110+ζ11 | ζ119+ζ112 | ζ118+ζ113 | ζ117+ζ114 | ζ116+ζ115 | ζ119+ζ112 | ζ116+ζ115 | ζ118+ζ113 | ζ117+ζ114 | ζ1110+ζ11 | ζ1110+ζ11 | ζ1110+ζ11 | ζ119+ζ112 | ζ118+ζ113 | ζ117+ζ114 | ζ116+ζ115 | ζ119+ζ112 | ζ118+ζ113 | ζ117+ζ114 | ζ116+ζ115 | orthogonal lifted from D11 |
ρ14 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | ζ119+ζ112 | ζ117+ζ114 | ζ116+ζ115 | ζ118+ζ113 | ζ1110+ζ11 | ζ117+ζ114 | ζ1110+ζ11 | ζ116+ζ115 | ζ118+ζ113 | ζ119+ζ112 | ζ119+ζ112 | ζ119+ζ112 | ζ117+ζ114 | ζ116+ζ115 | ζ118+ζ113 | ζ1110+ζ11 | ζ117+ζ114 | ζ116+ζ115 | ζ118+ζ113 | ζ1110+ζ11 | orthogonal lifted from D11 |
ρ15 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | ζ117+ζ114 | ζ118+ζ113 | ζ1110+ζ11 | ζ116+ζ115 | ζ119+ζ112 | ζ118+ζ113 | ζ119+ζ112 | ζ1110+ζ11 | ζ116+ζ115 | ζ117+ζ114 | ζ117+ζ114 | ζ117+ζ114 | ζ118+ζ113 | ζ1110+ζ11 | ζ116+ζ115 | ζ119+ζ112 | ζ118+ζ113 | ζ1110+ζ11 | ζ116+ζ115 | ζ119+ζ112 | orthogonal lifted from D11 |
ρ16 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | ζ118+ζ113 | ζ116+ζ115 | ζ119+ζ112 | ζ1110+ζ11 | ζ117+ζ114 | ζ116+ζ115 | ζ117+ζ114 | ζ119+ζ112 | ζ1110+ζ11 | ζ118+ζ113 | -ζ118-ζ113 | -ζ118-ζ113 | -ζ116-ζ115 | -ζ119-ζ112 | -ζ1110-ζ11 | -ζ117-ζ114 | -ζ116-ζ115 | -ζ119-ζ112 | -ζ1110-ζ11 | -ζ117-ζ114 | orthogonal lifted from D22 |
ρ17 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | ζ116+ζ115 | ζ1110+ζ11 | ζ117+ζ114 | ζ119+ζ112 | ζ118+ζ113 | ζ1110+ζ11 | ζ118+ζ113 | ζ117+ζ114 | ζ119+ζ112 | ζ116+ζ115 | ζ116+ζ115 | ζ116+ζ115 | ζ1110+ζ11 | ζ117+ζ114 | ζ119+ζ112 | ζ118+ζ113 | ζ1110+ζ11 | ζ117+ζ114 | ζ119+ζ112 | ζ118+ζ113 | orthogonal lifted from D11 |
ρ18 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | ζ119+ζ112 | ζ117+ζ114 | ζ116+ζ115 | ζ118+ζ113 | ζ1110+ζ11 | ζ117+ζ114 | ζ1110+ζ11 | ζ116+ζ115 | ζ118+ζ113 | ζ119+ζ112 | -ζ119-ζ112 | -ζ119-ζ112 | -ζ117-ζ114 | -ζ116-ζ115 | -ζ118-ζ113 | -ζ1110-ζ11 | -ζ117-ζ114 | -ζ116-ζ115 | -ζ118-ζ113 | -ζ1110-ζ11 | orthogonal lifted from D22 |
ρ19 | 2 | -2 | 0 | 0 | -2i | 2i | 0 | 0 | ζ119+ζ112 | ζ117+ζ114 | ζ116+ζ115 | ζ118+ζ113 | ζ1110+ζ11 | -ζ117-ζ114 | -ζ1110-ζ11 | -ζ116-ζ115 | -ζ118-ζ113 | -ζ119-ζ112 | ζ43ζ119+ζ43ζ112 | ζ4ζ119+ζ4ζ112 | ζ4ζ117+ζ4ζ114 | ζ4ζ116+ζ4ζ115 | ζ4ζ118+ζ4ζ113 | ζ4ζ1110+ζ4ζ11 | ζ43ζ117+ζ43ζ114 | ζ43ζ116+ζ43ζ115 | ζ43ζ118+ζ43ζ113 | ζ43ζ1110+ζ43ζ11 | complex faithful |
ρ20 | 2 | -2 | 0 | 0 | -2i | 2i | 0 | 0 | ζ117+ζ114 | ζ118+ζ113 | ζ1110+ζ11 | ζ116+ζ115 | ζ119+ζ112 | -ζ118-ζ113 | -ζ119-ζ112 | -ζ1110-ζ11 | -ζ116-ζ115 | -ζ117-ζ114 | ζ43ζ117+ζ43ζ114 | ζ4ζ117+ζ4ζ114 | ζ4ζ118+ζ4ζ113 | ζ4ζ1110+ζ4ζ11 | ζ4ζ116+ζ4ζ115 | ζ4ζ119+ζ4ζ112 | ζ43ζ118+ζ43ζ113 | ζ43ζ1110+ζ43ζ11 | ζ43ζ116+ζ43ζ115 | ζ43ζ119+ζ43ζ112 | complex faithful |
ρ21 | 2 | -2 | 0 | 0 | 2i | -2i | 0 | 0 | ζ116+ζ115 | ζ1110+ζ11 | ζ117+ζ114 | ζ119+ζ112 | ζ118+ζ113 | -ζ1110-ζ11 | -ζ118-ζ113 | -ζ117-ζ114 | -ζ119-ζ112 | -ζ116-ζ115 | ζ4ζ116+ζ4ζ115 | ζ43ζ116+ζ43ζ115 | ζ43ζ1110+ζ43ζ11 | ζ43ζ117+ζ43ζ114 | ζ43ζ119+ζ43ζ112 | ζ43ζ118+ζ43ζ113 | ζ4ζ1110+ζ4ζ11 | ζ4ζ117+ζ4ζ114 | ζ4ζ119+ζ4ζ112 | ζ4ζ118+ζ4ζ113 | complex faithful |
ρ22 | 2 | -2 | 0 | 0 | -2i | 2i | 0 | 0 | ζ116+ζ115 | ζ1110+ζ11 | ζ117+ζ114 | ζ119+ζ112 | ζ118+ζ113 | -ζ1110-ζ11 | -ζ118-ζ113 | -ζ117-ζ114 | -ζ119-ζ112 | -ζ116-ζ115 | ζ43ζ116+ζ43ζ115 | ζ4ζ116+ζ4ζ115 | ζ4ζ1110+ζ4ζ11 | ζ4ζ117+ζ4ζ114 | ζ4ζ119+ζ4ζ112 | ζ4ζ118+ζ4ζ113 | ζ43ζ1110+ζ43ζ11 | ζ43ζ117+ζ43ζ114 | ζ43ζ119+ζ43ζ112 | ζ43ζ118+ζ43ζ113 | complex faithful |
ρ23 | 2 | -2 | 0 | 0 | 2i | -2i | 0 | 0 | ζ117+ζ114 | ζ118+ζ113 | ζ1110+ζ11 | ζ116+ζ115 | ζ119+ζ112 | -ζ118-ζ113 | -ζ119-ζ112 | -ζ1110-ζ11 | -ζ116-ζ115 | -ζ117-ζ114 | ζ4ζ117+ζ4ζ114 | ζ43ζ117+ζ43ζ114 | ζ43ζ118+ζ43ζ113 | ζ43ζ1110+ζ43ζ11 | ζ43ζ116+ζ43ζ115 | ζ43ζ119+ζ43ζ112 | ζ4ζ118+ζ4ζ113 | ζ4ζ1110+ζ4ζ11 | ζ4ζ116+ζ4ζ115 | ζ4ζ119+ζ4ζ112 | complex faithful |
ρ24 | 2 | -2 | 0 | 0 | -2i | 2i | 0 | 0 | ζ118+ζ113 | ζ116+ζ115 | ζ119+ζ112 | ζ1110+ζ11 | ζ117+ζ114 | -ζ116-ζ115 | -ζ117-ζ114 | -ζ119-ζ112 | -ζ1110-ζ11 | -ζ118-ζ113 | ζ43ζ118+ζ43ζ113 | ζ4ζ118+ζ4ζ113 | ζ4ζ116+ζ4ζ115 | ζ4ζ119+ζ4ζ112 | ζ4ζ1110+ζ4ζ11 | ζ4ζ117+ζ4ζ114 | ζ43ζ116+ζ43ζ115 | ζ43ζ119+ζ43ζ112 | ζ43ζ1110+ζ43ζ11 | ζ43ζ117+ζ43ζ114 | complex faithful |
ρ25 | 2 | -2 | 0 | 0 | 2i | -2i | 0 | 0 | ζ118+ζ113 | ζ116+ζ115 | ζ119+ζ112 | ζ1110+ζ11 | ζ117+ζ114 | -ζ116-ζ115 | -ζ117-ζ114 | -ζ119-ζ112 | -ζ1110-ζ11 | -ζ118-ζ113 | ζ4ζ118+ζ4ζ113 | ζ43ζ118+ζ43ζ113 | ζ43ζ116+ζ43ζ115 | ζ43ζ119+ζ43ζ112 | ζ43ζ1110+ζ43ζ11 | ζ43ζ117+ζ43ζ114 | ζ4ζ116+ζ4ζ115 | ζ4ζ119+ζ4ζ112 | ζ4ζ1110+ζ4ζ11 | ζ4ζ117+ζ4ζ114 | complex faithful |
ρ26 | 2 | -2 | 0 | 0 | -2i | 2i | 0 | 0 | ζ1110+ζ11 | ζ119+ζ112 | ζ118+ζ113 | ζ117+ζ114 | ζ116+ζ115 | -ζ119-ζ112 | -ζ116-ζ115 | -ζ118-ζ113 | -ζ117-ζ114 | -ζ1110-ζ11 | ζ43ζ1110+ζ43ζ11 | ζ4ζ1110+ζ4ζ11 | ζ4ζ119+ζ4ζ112 | ζ4ζ118+ζ4ζ113 | ζ4ζ117+ζ4ζ114 | ζ4ζ116+ζ4ζ115 | ζ43ζ119+ζ43ζ112 | ζ43ζ118+ζ43ζ113 | ζ43ζ117+ζ43ζ114 | ζ43ζ116+ζ43ζ115 | complex faithful |
ρ27 | 2 | -2 | 0 | 0 | 2i | -2i | 0 | 0 | ζ1110+ζ11 | ζ119+ζ112 | ζ118+ζ113 | ζ117+ζ114 | ζ116+ζ115 | -ζ119-ζ112 | -ζ116-ζ115 | -ζ118-ζ113 | -ζ117-ζ114 | -ζ1110-ζ11 | ζ4ζ1110+ζ4ζ11 | ζ43ζ1110+ζ43ζ11 | ζ43ζ119+ζ43ζ112 | ζ43ζ118+ζ43ζ113 | ζ43ζ117+ζ43ζ114 | ζ43ζ116+ζ43ζ115 | ζ4ζ119+ζ4ζ112 | ζ4ζ118+ζ4ζ113 | ζ4ζ117+ζ4ζ114 | ζ4ζ116+ζ4ζ115 | complex faithful |
ρ28 | 2 | -2 | 0 | 0 | 2i | -2i | 0 | 0 | ζ119+ζ112 | ζ117+ζ114 | ζ116+ζ115 | ζ118+ζ113 | ζ1110+ζ11 | -ζ117-ζ114 | -ζ1110-ζ11 | -ζ116-ζ115 | -ζ118-ζ113 | -ζ119-ζ112 | ζ4ζ119+ζ4ζ112 | ζ43ζ119+ζ43ζ112 | ζ43ζ117+ζ43ζ114 | ζ43ζ116+ζ43ζ115 | ζ43ζ118+ζ43ζ113 | ζ43ζ1110+ζ43ζ11 | ζ4ζ117+ζ4ζ114 | ζ4ζ116+ζ4ζ115 | ζ4ζ118+ζ4ζ113 | ζ4ζ1110+ζ4ζ11 | complex faithful |
(1 43 21 32)(2 44 22 33)(3 34 12 23)(4 35 13 24)(5 36 14 25)(6 37 15 26)(7 38 16 27)(8 39 17 28)(9 40 18 29)(10 41 19 30)(11 42 20 31)
(1 2 3 4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33)(34 35 36 37 38 39 40 41 42 43 44)
(1 11)(2 10)(3 9)(4 8)(5 7)(12 18)(13 17)(14 16)(19 22)(20 21)(23 29)(24 28)(25 27)(30 33)(31 32)(34 40)(35 39)(36 38)(41 44)(42 43)
G:=sub<Sym(44)| (1,43,21,32)(2,44,22,33)(3,34,12,23)(4,35,13,24)(5,36,14,25)(6,37,15,26)(7,38,16,27)(8,39,17,28)(9,40,18,29)(10,41,19,30)(11,42,20,31), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44), (1,11)(2,10)(3,9)(4,8)(5,7)(12,18)(13,17)(14,16)(19,22)(20,21)(23,29)(24,28)(25,27)(30,33)(31,32)(34,40)(35,39)(36,38)(41,44)(42,43)>;
G:=Group( (1,43,21,32)(2,44,22,33)(3,34,12,23)(4,35,13,24)(5,36,14,25)(6,37,15,26)(7,38,16,27)(8,39,17,28)(9,40,18,29)(10,41,19,30)(11,42,20,31), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44), (1,11)(2,10)(3,9)(4,8)(5,7)(12,18)(13,17)(14,16)(19,22)(20,21)(23,29)(24,28)(25,27)(30,33)(31,32)(34,40)(35,39)(36,38)(41,44)(42,43) );
G=PermutationGroup([[(1,43,21,32),(2,44,22,33),(3,34,12,23),(4,35,13,24),(5,36,14,25),(6,37,15,26),(7,38,16,27),(8,39,17,28),(9,40,18,29),(10,41,19,30),(11,42,20,31)], [(1,2,3,4,5,6,7,8,9,10,11),(12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33),(34,35,36,37,38,39,40,41,42,43,44)], [(1,11),(2,10),(3,9),(4,8),(5,7),(12,18),(13,17),(14,16),(19,22),(20,21),(23,29),(24,28),(25,27),(30,33),(31,32),(34,40),(35,39),(36,38),(41,44),(42,43)]])
C4×D11 is a maximal subgroup of
C88⋊C2 D44⋊5C2 D4⋊2D11 D44⋊C2 D33⋊C4 D55⋊2C4
C4×D11 is a maximal quotient of C88⋊C2 Dic11⋊C4 D22⋊C4 D33⋊C4 D55⋊2C4
Matrix representation of C4×D11 ►in GL3(𝔽89) generated by
34 | 0 | 0 |
0 | 88 | 0 |
0 | 0 | 88 |
1 | 0 | 0 |
0 | 0 | 1 |
0 | 88 | 71 |
88 | 0 | 0 |
0 | 0 | 1 |
0 | 1 | 0 |
G:=sub<GL(3,GF(89))| [34,0,0,0,88,0,0,0,88],[1,0,0,0,0,88,0,1,71],[88,0,0,0,0,1,0,1,0] >;
C4×D11 in GAP, Magma, Sage, TeX
C_4\times D_{11}
% in TeX
G:=Group("C4xD11");
// GroupNames label
G:=SmallGroup(88,4);
// by ID
G=gap.SmallGroup(88,4);
# by ID
G:=PCGroup([4,-2,-2,-2,-11,21,1283]);
// Polycyclic
G:=Group<a,b,c|a^4=b^11=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations
Export
Subgroup lattice of C4×D11 in TeX
Character table of C4×D11 in TeX