metacyclic, supersoluble, monomial, 2-hyperelementary
Aliases: Dic22, C11⋊Q8, C4.D11, C44.1C2, C2.3D22, Dic11.C2, C22.1C22, SmallGroup(88,3)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for Dic22
G = < a,b | a44=1, b2=a22, bab-1=a-1 >
Character table of Dic22
class | 1 | 2 | 4A | 4B | 4C | 11A | 11B | 11C | 11D | 11E | 22A | 22B | 22C | 22D | 22E | 44A | 44B | 44C | 44D | 44E | 44F | 44G | 44H | 44I | 44J | |
size | 1 | 1 | 2 | 22 | 22 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 2 | 2 | -2 | 0 | 0 | ζ117+ζ114 | ζ116+ζ115 | ζ1110+ζ11 | ζ119+ζ112 | ζ118+ζ113 | ζ119+ζ112 | ζ118+ζ113 | ζ116+ζ115 | ζ1110+ζ11 | ζ117+ζ114 | -ζ117-ζ114 | -ζ119-ζ112 | -ζ118-ζ113 | -ζ118-ζ113 | -ζ119-ζ112 | -ζ117-ζ114 | -ζ1110-ζ11 | -ζ116-ζ115 | -ζ116-ζ115 | -ζ1110-ζ11 | orthogonal lifted from D22 |
ρ6 | 2 | 2 | -2 | 0 | 0 | ζ1110+ζ11 | ζ117+ζ114 | ζ118+ζ113 | ζ116+ζ115 | ζ119+ζ112 | ζ116+ζ115 | ζ119+ζ112 | ζ117+ζ114 | ζ118+ζ113 | ζ1110+ζ11 | -ζ1110-ζ11 | -ζ116-ζ115 | -ζ119-ζ112 | -ζ119-ζ112 | -ζ116-ζ115 | -ζ1110-ζ11 | -ζ118-ζ113 | -ζ117-ζ114 | -ζ117-ζ114 | -ζ118-ζ113 | orthogonal lifted from D22 |
ρ7 | 2 | 2 | -2 | 0 | 0 | ζ119+ζ112 | ζ118+ζ113 | ζ116+ζ115 | ζ1110+ζ11 | ζ117+ζ114 | ζ1110+ζ11 | ζ117+ζ114 | ζ118+ζ113 | ζ116+ζ115 | ζ119+ζ112 | -ζ119-ζ112 | -ζ1110-ζ11 | -ζ117-ζ114 | -ζ117-ζ114 | -ζ1110-ζ11 | -ζ119-ζ112 | -ζ116-ζ115 | -ζ118-ζ113 | -ζ118-ζ113 | -ζ116-ζ115 | orthogonal lifted from D22 |
ρ8 | 2 | 2 | 2 | 0 | 0 | ζ119+ζ112 | ζ118+ζ113 | ζ116+ζ115 | ζ1110+ζ11 | ζ117+ζ114 | ζ1110+ζ11 | ζ117+ζ114 | ζ118+ζ113 | ζ116+ζ115 | ζ119+ζ112 | ζ119+ζ112 | ζ1110+ζ11 | ζ117+ζ114 | ζ117+ζ114 | ζ1110+ζ11 | ζ119+ζ112 | ζ116+ζ115 | ζ118+ζ113 | ζ118+ζ113 | ζ116+ζ115 | orthogonal lifted from D11 |
ρ9 | 2 | 2 | 2 | 0 | 0 | ζ117+ζ114 | ζ116+ζ115 | ζ1110+ζ11 | ζ119+ζ112 | ζ118+ζ113 | ζ119+ζ112 | ζ118+ζ113 | ζ116+ζ115 | ζ1110+ζ11 | ζ117+ζ114 | ζ117+ζ114 | ζ119+ζ112 | ζ118+ζ113 | ζ118+ζ113 | ζ119+ζ112 | ζ117+ζ114 | ζ1110+ζ11 | ζ116+ζ115 | ζ116+ζ115 | ζ1110+ζ11 | orthogonal lifted from D11 |
ρ10 | 2 | 2 | 2 | 0 | 0 | ζ1110+ζ11 | ζ117+ζ114 | ζ118+ζ113 | ζ116+ζ115 | ζ119+ζ112 | ζ116+ζ115 | ζ119+ζ112 | ζ117+ζ114 | ζ118+ζ113 | ζ1110+ζ11 | ζ1110+ζ11 | ζ116+ζ115 | ζ119+ζ112 | ζ119+ζ112 | ζ116+ζ115 | ζ1110+ζ11 | ζ118+ζ113 | ζ117+ζ114 | ζ117+ζ114 | ζ118+ζ113 | orthogonal lifted from D11 |
ρ11 | 2 | 2 | -2 | 0 | 0 | ζ116+ζ115 | ζ119+ζ112 | ζ117+ζ114 | ζ118+ζ113 | ζ1110+ζ11 | ζ118+ζ113 | ζ1110+ζ11 | ζ119+ζ112 | ζ117+ζ114 | ζ116+ζ115 | -ζ116-ζ115 | -ζ118-ζ113 | -ζ1110-ζ11 | -ζ1110-ζ11 | -ζ118-ζ113 | -ζ116-ζ115 | -ζ117-ζ114 | -ζ119-ζ112 | -ζ119-ζ112 | -ζ117-ζ114 | orthogonal lifted from D22 |
ρ12 | 2 | 2 | -2 | 0 | 0 | ζ118+ζ113 | ζ1110+ζ11 | ζ119+ζ112 | ζ117+ζ114 | ζ116+ζ115 | ζ117+ζ114 | ζ116+ζ115 | ζ1110+ζ11 | ζ119+ζ112 | ζ118+ζ113 | -ζ118-ζ113 | -ζ117-ζ114 | -ζ116-ζ115 | -ζ116-ζ115 | -ζ117-ζ114 | -ζ118-ζ113 | -ζ119-ζ112 | -ζ1110-ζ11 | -ζ1110-ζ11 | -ζ119-ζ112 | orthogonal lifted from D22 |
ρ13 | 2 | 2 | 2 | 0 | 0 | ζ116+ζ115 | ζ119+ζ112 | ζ117+ζ114 | ζ118+ζ113 | ζ1110+ζ11 | ζ118+ζ113 | ζ1110+ζ11 | ζ119+ζ112 | ζ117+ζ114 | ζ116+ζ115 | ζ116+ζ115 | ζ118+ζ113 | ζ1110+ζ11 | ζ1110+ζ11 | ζ118+ζ113 | ζ116+ζ115 | ζ117+ζ114 | ζ119+ζ112 | ζ119+ζ112 | ζ117+ζ114 | orthogonal lifted from D11 |
ρ14 | 2 | 2 | 2 | 0 | 0 | ζ118+ζ113 | ζ1110+ζ11 | ζ119+ζ112 | ζ117+ζ114 | ζ116+ζ115 | ζ117+ζ114 | ζ116+ζ115 | ζ1110+ζ11 | ζ119+ζ112 | ζ118+ζ113 | ζ118+ζ113 | ζ117+ζ114 | ζ116+ζ115 | ζ116+ζ115 | ζ117+ζ114 | ζ118+ζ113 | ζ119+ζ112 | ζ1110+ζ11 | ζ1110+ζ11 | ζ119+ζ112 | orthogonal lifted from D11 |
ρ15 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ16 | 2 | -2 | 0 | 0 | 0 | ζ1110+ζ11 | ζ117+ζ114 | ζ118+ζ113 | ζ116+ζ115 | ζ119+ζ112 | -ζ116-ζ115 | -ζ119-ζ112 | -ζ117-ζ114 | -ζ118-ζ113 | -ζ1110-ζ11 | ζ4ζ1110-ζ4ζ11 | -ζ43ζ116+ζ43ζ115 | -ζ4ζ119+ζ4ζ112 | ζ4ζ119-ζ4ζ112 | ζ43ζ116-ζ43ζ115 | -ζ4ζ1110+ζ4ζ11 | -ζ43ζ118+ζ43ζ113 | -ζ4ζ117+ζ4ζ114 | ζ4ζ117-ζ4ζ114 | ζ43ζ118-ζ43ζ113 | symplectic faithful, Schur index 2 |
ρ17 | 2 | -2 | 0 | 0 | 0 | ζ117+ζ114 | ζ116+ζ115 | ζ1110+ζ11 | ζ119+ζ112 | ζ118+ζ113 | -ζ119-ζ112 | -ζ118-ζ113 | -ζ116-ζ115 | -ζ1110-ζ11 | -ζ117-ζ114 | -ζ4ζ117+ζ4ζ114 | ζ4ζ119-ζ4ζ112 | ζ43ζ118-ζ43ζ113 | -ζ43ζ118+ζ43ζ113 | -ζ4ζ119+ζ4ζ112 | ζ4ζ117-ζ4ζ114 | -ζ4ζ1110+ζ4ζ11 | -ζ43ζ116+ζ43ζ115 | ζ43ζ116-ζ43ζ115 | ζ4ζ1110-ζ4ζ11 | symplectic faithful, Schur index 2 |
ρ18 | 2 | -2 | 0 | 0 | 0 | ζ118+ζ113 | ζ1110+ζ11 | ζ119+ζ112 | ζ117+ζ114 | ζ116+ζ115 | -ζ117-ζ114 | -ζ116-ζ115 | -ζ1110-ζ11 | -ζ119-ζ112 | -ζ118-ζ113 | ζ43ζ118-ζ43ζ113 | -ζ4ζ117+ζ4ζ114 | ζ43ζ116-ζ43ζ115 | -ζ43ζ116+ζ43ζ115 | ζ4ζ117-ζ4ζ114 | -ζ43ζ118+ζ43ζ113 | ζ4ζ119-ζ4ζ112 | ζ4ζ1110-ζ4ζ11 | -ζ4ζ1110+ζ4ζ11 | -ζ4ζ119+ζ4ζ112 | symplectic faithful, Schur index 2 |
ρ19 | 2 | -2 | 0 | 0 | 0 | ζ116+ζ115 | ζ119+ζ112 | ζ117+ζ114 | ζ118+ζ113 | ζ1110+ζ11 | -ζ118-ζ113 | -ζ1110-ζ11 | -ζ119-ζ112 | -ζ117-ζ114 | -ζ116-ζ115 | -ζ43ζ116+ζ43ζ115 | -ζ43ζ118+ζ43ζ113 | ζ4ζ1110-ζ4ζ11 | -ζ4ζ1110+ζ4ζ11 | ζ43ζ118-ζ43ζ113 | ζ43ζ116-ζ43ζ115 | ζ4ζ117-ζ4ζ114 | ζ4ζ119-ζ4ζ112 | -ζ4ζ119+ζ4ζ112 | -ζ4ζ117+ζ4ζ114 | symplectic faithful, Schur index 2 |
ρ20 | 2 | -2 | 0 | 0 | 0 | ζ119+ζ112 | ζ118+ζ113 | ζ116+ζ115 | ζ1110+ζ11 | ζ117+ζ114 | -ζ1110-ζ11 | -ζ117-ζ114 | -ζ118-ζ113 | -ζ116-ζ115 | -ζ119-ζ112 | -ζ4ζ119+ζ4ζ112 | ζ4ζ1110-ζ4ζ11 | ζ4ζ117-ζ4ζ114 | -ζ4ζ117+ζ4ζ114 | -ζ4ζ1110+ζ4ζ11 | ζ4ζ119-ζ4ζ112 | -ζ43ζ116+ζ43ζ115 | ζ43ζ118-ζ43ζ113 | -ζ43ζ118+ζ43ζ113 | ζ43ζ116-ζ43ζ115 | symplectic faithful, Schur index 2 |
ρ21 | 2 | -2 | 0 | 0 | 0 | ζ119+ζ112 | ζ118+ζ113 | ζ116+ζ115 | ζ1110+ζ11 | ζ117+ζ114 | -ζ1110-ζ11 | -ζ117-ζ114 | -ζ118-ζ113 | -ζ116-ζ115 | -ζ119-ζ112 | ζ4ζ119-ζ4ζ112 | -ζ4ζ1110+ζ4ζ11 | -ζ4ζ117+ζ4ζ114 | ζ4ζ117-ζ4ζ114 | ζ4ζ1110-ζ4ζ11 | -ζ4ζ119+ζ4ζ112 | ζ43ζ116-ζ43ζ115 | -ζ43ζ118+ζ43ζ113 | ζ43ζ118-ζ43ζ113 | -ζ43ζ116+ζ43ζ115 | symplectic faithful, Schur index 2 |
ρ22 | 2 | -2 | 0 | 0 | 0 | ζ116+ζ115 | ζ119+ζ112 | ζ117+ζ114 | ζ118+ζ113 | ζ1110+ζ11 | -ζ118-ζ113 | -ζ1110-ζ11 | -ζ119-ζ112 | -ζ117-ζ114 | -ζ116-ζ115 | ζ43ζ116-ζ43ζ115 | ζ43ζ118-ζ43ζ113 | -ζ4ζ1110+ζ4ζ11 | ζ4ζ1110-ζ4ζ11 | -ζ43ζ118+ζ43ζ113 | -ζ43ζ116+ζ43ζ115 | -ζ4ζ117+ζ4ζ114 | -ζ4ζ119+ζ4ζ112 | ζ4ζ119-ζ4ζ112 | ζ4ζ117-ζ4ζ114 | symplectic faithful, Schur index 2 |
ρ23 | 2 | -2 | 0 | 0 | 0 | ζ118+ζ113 | ζ1110+ζ11 | ζ119+ζ112 | ζ117+ζ114 | ζ116+ζ115 | -ζ117-ζ114 | -ζ116-ζ115 | -ζ1110-ζ11 | -ζ119-ζ112 | -ζ118-ζ113 | -ζ43ζ118+ζ43ζ113 | ζ4ζ117-ζ4ζ114 | -ζ43ζ116+ζ43ζ115 | ζ43ζ116-ζ43ζ115 | -ζ4ζ117+ζ4ζ114 | ζ43ζ118-ζ43ζ113 | -ζ4ζ119+ζ4ζ112 | -ζ4ζ1110+ζ4ζ11 | ζ4ζ1110-ζ4ζ11 | ζ4ζ119-ζ4ζ112 | symplectic faithful, Schur index 2 |
ρ24 | 2 | -2 | 0 | 0 | 0 | ζ1110+ζ11 | ζ117+ζ114 | ζ118+ζ113 | ζ116+ζ115 | ζ119+ζ112 | -ζ116-ζ115 | -ζ119-ζ112 | -ζ117-ζ114 | -ζ118-ζ113 | -ζ1110-ζ11 | -ζ4ζ1110+ζ4ζ11 | ζ43ζ116-ζ43ζ115 | ζ4ζ119-ζ4ζ112 | -ζ4ζ119+ζ4ζ112 | -ζ43ζ116+ζ43ζ115 | ζ4ζ1110-ζ4ζ11 | ζ43ζ118-ζ43ζ113 | ζ4ζ117-ζ4ζ114 | -ζ4ζ117+ζ4ζ114 | -ζ43ζ118+ζ43ζ113 | symplectic faithful, Schur index 2 |
ρ25 | 2 | -2 | 0 | 0 | 0 | ζ117+ζ114 | ζ116+ζ115 | ζ1110+ζ11 | ζ119+ζ112 | ζ118+ζ113 | -ζ119-ζ112 | -ζ118-ζ113 | -ζ116-ζ115 | -ζ1110-ζ11 | -ζ117-ζ114 | ζ4ζ117-ζ4ζ114 | -ζ4ζ119+ζ4ζ112 | -ζ43ζ118+ζ43ζ113 | ζ43ζ118-ζ43ζ113 | ζ4ζ119-ζ4ζ112 | -ζ4ζ117+ζ4ζ114 | ζ4ζ1110-ζ4ζ11 | ζ43ζ116-ζ43ζ115 | -ζ43ζ116+ζ43ζ115 | -ζ4ζ1110+ζ4ζ11 | symplectic faithful, Schur index 2 |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88)
(1 58 23 80)(2 57 24 79)(3 56 25 78)(4 55 26 77)(5 54 27 76)(6 53 28 75)(7 52 29 74)(8 51 30 73)(9 50 31 72)(10 49 32 71)(11 48 33 70)(12 47 34 69)(13 46 35 68)(14 45 36 67)(15 88 37 66)(16 87 38 65)(17 86 39 64)(18 85 40 63)(19 84 41 62)(20 83 42 61)(21 82 43 60)(22 81 44 59)
G:=sub<Sym(88)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88), (1,58,23,80)(2,57,24,79)(3,56,25,78)(4,55,26,77)(5,54,27,76)(6,53,28,75)(7,52,29,74)(8,51,30,73)(9,50,31,72)(10,49,32,71)(11,48,33,70)(12,47,34,69)(13,46,35,68)(14,45,36,67)(15,88,37,66)(16,87,38,65)(17,86,39,64)(18,85,40,63)(19,84,41,62)(20,83,42,61)(21,82,43,60)(22,81,44,59)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88), (1,58,23,80)(2,57,24,79)(3,56,25,78)(4,55,26,77)(5,54,27,76)(6,53,28,75)(7,52,29,74)(8,51,30,73)(9,50,31,72)(10,49,32,71)(11,48,33,70)(12,47,34,69)(13,46,35,68)(14,45,36,67)(15,88,37,66)(16,87,38,65)(17,86,39,64)(18,85,40,63)(19,84,41,62)(20,83,42,61)(21,82,43,60)(22,81,44,59) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88)], [(1,58,23,80),(2,57,24,79),(3,56,25,78),(4,55,26,77),(5,54,27,76),(6,53,28,75),(7,52,29,74),(8,51,30,73),(9,50,31,72),(10,49,32,71),(11,48,33,70),(12,47,34,69),(13,46,35,68),(14,45,36,67),(15,88,37,66),(16,87,38,65),(17,86,39,64),(18,85,40,63),(19,84,41,62),(20,83,42,61),(21,82,43,60),(22,81,44,59)]])
Dic22 is a maximal subgroup of
C8⋊D11 Dic44 D4.D11 C11⋊Q16 D44⋊5C2 D4⋊2D11 Q8×D11 C33⋊Q8 Dic66 C4.F11 C55⋊Q8 Dic110
Dic22 is a maximal quotient of
Dic11⋊C4 C44⋊C4 C33⋊Q8 Dic66 C55⋊Q8 Dic110
Matrix representation of Dic22 ►in GL2(𝔽43) generated by
5 | 20 |
20 | 20 |
9 | 41 |
41 | 34 |
G:=sub<GL(2,GF(43))| [5,20,20,20],[9,41,41,34] >;
Dic22 in GAP, Magma, Sage, TeX
{\rm Dic}_{22}
% in TeX
G:=Group("Dic22");
// GroupNames label
G:=SmallGroup(88,3);
// by ID
G=gap.SmallGroup(88,3);
# by ID
G:=PCGroup([4,-2,-2,-2,-11,16,49,21,1283]);
// Polycyclic
G:=Group<a,b|a^44=1,b^2=a^22,b*a*b^-1=a^-1>;
// generators/relations
Export
Subgroup lattice of Dic22 in TeX
Character table of Dic22 in TeX