metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: Dic23, C23⋊C4, C46.C2, C2.D23, SmallGroup(92,1)
Series: Derived ►Chief ►Lower central ►Upper central
C23 — Dic23 |
Generators and relations for Dic23
G = < a,b | a46=1, b2=a23, bab-1=a-1 >
Character table of Dic23
class | 1 | 2 | 4A | 4B | 23A | 23B | 23C | 23D | 23E | 23F | 23G | 23H | 23I | 23J | 23K | 46A | 46B | 46C | 46D | 46E | 46F | 46G | 46H | 46I | 46J | 46K | |
size | 1 | 1 | 23 | 23 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | i | -i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ4 | 1 | -1 | -i | i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ5 | 2 | 2 | 0 | 0 | ζ2315+ζ238 | ζ2313+ζ2310 | ζ2312+ζ2311 | ζ2314+ζ239 | ζ2316+ζ237 | ζ2318+ζ235 | ζ2320+ζ233 | ζ2322+ζ23 | ζ2321+ζ232 | ζ2319+ζ234 | ζ2317+ζ236 | ζ2317+ζ236 | ζ2315+ζ238 | ζ2313+ζ2310 | ζ2312+ζ2311 | ζ2314+ζ239 | ζ2316+ζ237 | ζ2318+ζ235 | ζ2320+ζ233 | ζ2322+ζ23 | ζ2321+ζ232 | ζ2319+ζ234 | orthogonal lifted from D23 |
ρ6 | 2 | 2 | 0 | 0 | ζ2319+ζ234 | ζ2318+ζ235 | ζ2317+ζ236 | ζ2316+ζ237 | ζ2315+ζ238 | ζ2314+ζ239 | ζ2313+ζ2310 | ζ2312+ζ2311 | ζ2322+ζ23 | ζ2321+ζ232 | ζ2320+ζ233 | ζ2320+ζ233 | ζ2319+ζ234 | ζ2318+ζ235 | ζ2317+ζ236 | ζ2316+ζ237 | ζ2315+ζ238 | ζ2314+ζ239 | ζ2313+ζ2310 | ζ2312+ζ2311 | ζ2322+ζ23 | ζ2321+ζ232 | orthogonal lifted from D23 |
ρ7 | 2 | 2 | 0 | 0 | ζ2316+ζ237 | ζ2320+ζ233 | ζ2322+ζ23 | ζ2318+ζ235 | ζ2314+ζ239 | ζ2313+ζ2310 | ζ2317+ζ236 | ζ2321+ζ232 | ζ2319+ζ234 | ζ2315+ζ238 | ζ2312+ζ2311 | ζ2312+ζ2311 | ζ2316+ζ237 | ζ2320+ζ233 | ζ2322+ζ23 | ζ2318+ζ235 | ζ2314+ζ239 | ζ2313+ζ2310 | ζ2317+ζ236 | ζ2321+ζ232 | ζ2319+ζ234 | ζ2315+ζ238 | orthogonal lifted from D23 |
ρ8 | 2 | 2 | 0 | 0 | ζ2317+ζ236 | ζ2319+ζ234 | ζ2314+ζ239 | ζ2322+ζ23 | ζ2312+ζ2311 | ζ2321+ζ232 | ζ2315+ζ238 | ζ2318+ζ235 | ζ2313+ζ2310 | ζ2320+ζ233 | ζ2316+ζ237 | ζ2316+ζ237 | ζ2317+ζ236 | ζ2319+ζ234 | ζ2314+ζ239 | ζ2322+ζ23 | ζ2312+ζ2311 | ζ2321+ζ232 | ζ2315+ζ238 | ζ2318+ζ235 | ζ2313+ζ2310 | ζ2320+ζ233 | orthogonal lifted from D23 |
ρ9 | 2 | 2 | 0 | 0 | ζ2313+ζ2310 | ζ2322+ζ23 | ζ2315+ζ238 | ζ2317+ζ236 | ζ2320+ζ233 | ζ2312+ζ2311 | ζ2321+ζ232 | ζ2316+ζ237 | ζ2314+ζ239 | ζ2318+ζ235 | ζ2319+ζ234 | ζ2319+ζ234 | ζ2313+ζ2310 | ζ2322+ζ23 | ζ2315+ζ238 | ζ2317+ζ236 | ζ2320+ζ233 | ζ2312+ζ2311 | ζ2321+ζ232 | ζ2316+ζ237 | ζ2314+ζ239 | ζ2318+ζ235 | orthogonal lifted from D23 |
ρ10 | 2 | 2 | 0 | 0 | ζ2320+ζ233 | ζ2321+ζ232 | ζ2316+ζ237 | ζ2312+ζ2311 | ζ2317+ζ236 | ζ2322+ζ23 | ζ2319+ζ234 | ζ2314+ζ239 | ζ2318+ζ235 | ζ2313+ζ2310 | ζ2315+ζ238 | ζ2315+ζ238 | ζ2320+ζ233 | ζ2321+ζ232 | ζ2316+ζ237 | ζ2312+ζ2311 | ζ2317+ζ236 | ζ2322+ζ23 | ζ2319+ζ234 | ζ2314+ζ239 | ζ2318+ζ235 | ζ2313+ζ2310 | orthogonal lifted from D23 |
ρ11 | 2 | 2 | 0 | 0 | ζ2318+ζ235 | ζ2312+ζ2311 | ζ2319+ζ234 | ζ2320+ζ233 | ζ2313+ζ2310 | ζ2317+ζ236 | ζ2322+ζ23 | ζ2315+ζ238 | ζ2316+ζ237 | ζ2314+ζ239 | ζ2321+ζ232 | ζ2321+ζ232 | ζ2318+ζ235 | ζ2312+ζ2311 | ζ2319+ζ234 | ζ2320+ζ233 | ζ2313+ζ2310 | ζ2317+ζ236 | ζ2322+ζ23 | ζ2315+ζ238 | ζ2316+ζ237 | ζ2314+ζ239 | orthogonal lifted from D23 |
ρ12 | 2 | 2 | 0 | 0 | ζ2314+ζ239 | ζ2317+ζ236 | ζ2321+ζ232 | ζ2313+ζ2310 | ζ2318+ζ235 | ζ2320+ζ233 | ζ2312+ζ2311 | ζ2319+ζ234 | ζ2315+ζ238 | ζ2316+ζ237 | ζ2322+ζ23 | ζ2322+ζ23 | ζ2314+ζ239 | ζ2317+ζ236 | ζ2321+ζ232 | ζ2313+ζ2310 | ζ2318+ζ235 | ζ2320+ζ233 | ζ2312+ζ2311 | ζ2319+ζ234 | ζ2315+ζ238 | ζ2316+ζ237 | orthogonal lifted from D23 |
ρ13 | 2 | 2 | 0 | 0 | ζ2312+ζ2311 | ζ2315+ζ238 | ζ2318+ζ235 | ζ2321+ζ232 | ζ2322+ζ23 | ζ2319+ζ234 | ζ2316+ζ237 | ζ2313+ζ2310 | ζ2320+ζ233 | ζ2317+ζ236 | ζ2314+ζ239 | ζ2314+ζ239 | ζ2312+ζ2311 | ζ2315+ζ238 | ζ2318+ζ235 | ζ2321+ζ232 | ζ2322+ζ23 | ζ2319+ζ234 | ζ2316+ζ237 | ζ2313+ζ2310 | ζ2320+ζ233 | ζ2317+ζ236 | orthogonal lifted from D23 |
ρ14 | 2 | 2 | 0 | 0 | ζ2321+ζ232 | ζ2314+ζ239 | ζ2320+ζ233 | ζ2315+ζ238 | ζ2319+ζ234 | ζ2316+ζ237 | ζ2318+ζ235 | ζ2317+ζ236 | ζ2312+ζ2311 | ζ2322+ζ23 | ζ2313+ζ2310 | ζ2313+ζ2310 | ζ2321+ζ232 | ζ2314+ζ239 | ζ2320+ζ233 | ζ2315+ζ238 | ζ2319+ζ234 | ζ2316+ζ237 | ζ2318+ζ235 | ζ2317+ζ236 | ζ2312+ζ2311 | ζ2322+ζ23 | orthogonal lifted from D23 |
ρ15 | 2 | 2 | 0 | 0 | ζ2322+ζ23 | ζ2316+ζ237 | ζ2313+ζ2310 | ζ2319+ζ234 | ζ2321+ζ232 | ζ2315+ζ238 | ζ2314+ζ239 | ζ2320+ζ233 | ζ2317+ζ236 | ζ2312+ζ2311 | ζ2318+ζ235 | ζ2318+ζ235 | ζ2322+ζ23 | ζ2316+ζ237 | ζ2313+ζ2310 | ζ2319+ζ234 | ζ2321+ζ232 | ζ2315+ζ238 | ζ2314+ζ239 | ζ2320+ζ233 | ζ2317+ζ236 | ζ2312+ζ2311 | orthogonal lifted from D23 |
ρ16 | 2 | -2 | 0 | 0 | ζ2321+ζ232 | ζ2314+ζ239 | ζ2320+ζ233 | ζ2315+ζ238 | ζ2319+ζ234 | ζ2316+ζ237 | ζ2318+ζ235 | ζ2317+ζ236 | ζ2312+ζ2311 | ζ2322+ζ23 | ζ2313+ζ2310 | -ζ2313-ζ2310 | -ζ2321-ζ232 | -ζ2314-ζ239 | -ζ2320-ζ233 | -ζ2315-ζ238 | -ζ2319-ζ234 | -ζ2316-ζ237 | -ζ2318-ζ235 | -ζ2317-ζ236 | -ζ2312-ζ2311 | -ζ2322-ζ23 | symplectic faithful, Schur index 2 |
ρ17 | 2 | -2 | 0 | 0 | ζ2320+ζ233 | ζ2321+ζ232 | ζ2316+ζ237 | ζ2312+ζ2311 | ζ2317+ζ236 | ζ2322+ζ23 | ζ2319+ζ234 | ζ2314+ζ239 | ζ2318+ζ235 | ζ2313+ζ2310 | ζ2315+ζ238 | -ζ2315-ζ238 | -ζ2320-ζ233 | -ζ2321-ζ232 | -ζ2316-ζ237 | -ζ2312-ζ2311 | -ζ2317-ζ236 | -ζ2322-ζ23 | -ζ2319-ζ234 | -ζ2314-ζ239 | -ζ2318-ζ235 | -ζ2313-ζ2310 | symplectic faithful, Schur index 2 |
ρ18 | 2 | -2 | 0 | 0 | ζ2315+ζ238 | ζ2313+ζ2310 | ζ2312+ζ2311 | ζ2314+ζ239 | ζ2316+ζ237 | ζ2318+ζ235 | ζ2320+ζ233 | ζ2322+ζ23 | ζ2321+ζ232 | ζ2319+ζ234 | ζ2317+ζ236 | -ζ2317-ζ236 | -ζ2315-ζ238 | -ζ2313-ζ2310 | -ζ2312-ζ2311 | -ζ2314-ζ239 | -ζ2316-ζ237 | -ζ2318-ζ235 | -ζ2320-ζ233 | -ζ2322-ζ23 | -ζ2321-ζ232 | -ζ2319-ζ234 | symplectic faithful, Schur index 2 |
ρ19 | 2 | -2 | 0 | 0 | ζ2318+ζ235 | ζ2312+ζ2311 | ζ2319+ζ234 | ζ2320+ζ233 | ζ2313+ζ2310 | ζ2317+ζ236 | ζ2322+ζ23 | ζ2315+ζ238 | ζ2316+ζ237 | ζ2314+ζ239 | ζ2321+ζ232 | -ζ2321-ζ232 | -ζ2318-ζ235 | -ζ2312-ζ2311 | -ζ2319-ζ234 | -ζ2320-ζ233 | -ζ2313-ζ2310 | -ζ2317-ζ236 | -ζ2322-ζ23 | -ζ2315-ζ238 | -ζ2316-ζ237 | -ζ2314-ζ239 | symplectic faithful, Schur index 2 |
ρ20 | 2 | -2 | 0 | 0 | ζ2319+ζ234 | ζ2318+ζ235 | ζ2317+ζ236 | ζ2316+ζ237 | ζ2315+ζ238 | ζ2314+ζ239 | ζ2313+ζ2310 | ζ2312+ζ2311 | ζ2322+ζ23 | ζ2321+ζ232 | ζ2320+ζ233 | -ζ2320-ζ233 | -ζ2319-ζ234 | -ζ2318-ζ235 | -ζ2317-ζ236 | -ζ2316-ζ237 | -ζ2315-ζ238 | -ζ2314-ζ239 | -ζ2313-ζ2310 | -ζ2312-ζ2311 | -ζ2322-ζ23 | -ζ2321-ζ232 | symplectic faithful, Schur index 2 |
ρ21 | 2 | -2 | 0 | 0 | ζ2314+ζ239 | ζ2317+ζ236 | ζ2321+ζ232 | ζ2313+ζ2310 | ζ2318+ζ235 | ζ2320+ζ233 | ζ2312+ζ2311 | ζ2319+ζ234 | ζ2315+ζ238 | ζ2316+ζ237 | ζ2322+ζ23 | -ζ2322-ζ23 | -ζ2314-ζ239 | -ζ2317-ζ236 | -ζ2321-ζ232 | -ζ2313-ζ2310 | -ζ2318-ζ235 | -ζ2320-ζ233 | -ζ2312-ζ2311 | -ζ2319-ζ234 | -ζ2315-ζ238 | -ζ2316-ζ237 | symplectic faithful, Schur index 2 |
ρ22 | 2 | -2 | 0 | 0 | ζ2322+ζ23 | ζ2316+ζ237 | ζ2313+ζ2310 | ζ2319+ζ234 | ζ2321+ζ232 | ζ2315+ζ238 | ζ2314+ζ239 | ζ2320+ζ233 | ζ2317+ζ236 | ζ2312+ζ2311 | ζ2318+ζ235 | -ζ2318-ζ235 | -ζ2322-ζ23 | -ζ2316-ζ237 | -ζ2313-ζ2310 | -ζ2319-ζ234 | -ζ2321-ζ232 | -ζ2315-ζ238 | -ζ2314-ζ239 | -ζ2320-ζ233 | -ζ2317-ζ236 | -ζ2312-ζ2311 | symplectic faithful, Schur index 2 |
ρ23 | 2 | -2 | 0 | 0 | ζ2312+ζ2311 | ζ2315+ζ238 | ζ2318+ζ235 | ζ2321+ζ232 | ζ2322+ζ23 | ζ2319+ζ234 | ζ2316+ζ237 | ζ2313+ζ2310 | ζ2320+ζ233 | ζ2317+ζ236 | ζ2314+ζ239 | -ζ2314-ζ239 | -ζ2312-ζ2311 | -ζ2315-ζ238 | -ζ2318-ζ235 | -ζ2321-ζ232 | -ζ2322-ζ23 | -ζ2319-ζ234 | -ζ2316-ζ237 | -ζ2313-ζ2310 | -ζ2320-ζ233 | -ζ2317-ζ236 | symplectic faithful, Schur index 2 |
ρ24 | 2 | -2 | 0 | 0 | ζ2313+ζ2310 | ζ2322+ζ23 | ζ2315+ζ238 | ζ2317+ζ236 | ζ2320+ζ233 | ζ2312+ζ2311 | ζ2321+ζ232 | ζ2316+ζ237 | ζ2314+ζ239 | ζ2318+ζ235 | ζ2319+ζ234 | -ζ2319-ζ234 | -ζ2313-ζ2310 | -ζ2322-ζ23 | -ζ2315-ζ238 | -ζ2317-ζ236 | -ζ2320-ζ233 | -ζ2312-ζ2311 | -ζ2321-ζ232 | -ζ2316-ζ237 | -ζ2314-ζ239 | -ζ2318-ζ235 | symplectic faithful, Schur index 2 |
ρ25 | 2 | -2 | 0 | 0 | ζ2317+ζ236 | ζ2319+ζ234 | ζ2314+ζ239 | ζ2322+ζ23 | ζ2312+ζ2311 | ζ2321+ζ232 | ζ2315+ζ238 | ζ2318+ζ235 | ζ2313+ζ2310 | ζ2320+ζ233 | ζ2316+ζ237 | -ζ2316-ζ237 | -ζ2317-ζ236 | -ζ2319-ζ234 | -ζ2314-ζ239 | -ζ2322-ζ23 | -ζ2312-ζ2311 | -ζ2321-ζ232 | -ζ2315-ζ238 | -ζ2318-ζ235 | -ζ2313-ζ2310 | -ζ2320-ζ233 | symplectic faithful, Schur index 2 |
ρ26 | 2 | -2 | 0 | 0 | ζ2316+ζ237 | ζ2320+ζ233 | ζ2322+ζ23 | ζ2318+ζ235 | ζ2314+ζ239 | ζ2313+ζ2310 | ζ2317+ζ236 | ζ2321+ζ232 | ζ2319+ζ234 | ζ2315+ζ238 | ζ2312+ζ2311 | -ζ2312-ζ2311 | -ζ2316-ζ237 | -ζ2320-ζ233 | -ζ2322-ζ23 | -ζ2318-ζ235 | -ζ2314-ζ239 | -ζ2313-ζ2310 | -ζ2317-ζ236 | -ζ2321-ζ232 | -ζ2319-ζ234 | -ζ2315-ζ238 | symplectic faithful, Schur index 2 |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46)(47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92)
(1 89 24 66)(2 88 25 65)(3 87 26 64)(4 86 27 63)(5 85 28 62)(6 84 29 61)(7 83 30 60)(8 82 31 59)(9 81 32 58)(10 80 33 57)(11 79 34 56)(12 78 35 55)(13 77 36 54)(14 76 37 53)(15 75 38 52)(16 74 39 51)(17 73 40 50)(18 72 41 49)(19 71 42 48)(20 70 43 47)(21 69 44 92)(22 68 45 91)(23 67 46 90)
G:=sub<Sym(92)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46)(47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92), (1,89,24,66)(2,88,25,65)(3,87,26,64)(4,86,27,63)(5,85,28,62)(6,84,29,61)(7,83,30,60)(8,82,31,59)(9,81,32,58)(10,80,33,57)(11,79,34,56)(12,78,35,55)(13,77,36,54)(14,76,37,53)(15,75,38,52)(16,74,39,51)(17,73,40,50)(18,72,41,49)(19,71,42,48)(20,70,43,47)(21,69,44,92)(22,68,45,91)(23,67,46,90)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46)(47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92), (1,89,24,66)(2,88,25,65)(3,87,26,64)(4,86,27,63)(5,85,28,62)(6,84,29,61)(7,83,30,60)(8,82,31,59)(9,81,32,58)(10,80,33,57)(11,79,34,56)(12,78,35,55)(13,77,36,54)(14,76,37,53)(15,75,38,52)(16,74,39,51)(17,73,40,50)(18,72,41,49)(19,71,42,48)(20,70,43,47)(21,69,44,92)(22,68,45,91)(23,67,46,90) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46),(47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92)], [(1,89,24,66),(2,88,25,65),(3,87,26,64),(4,86,27,63),(5,85,28,62),(6,84,29,61),(7,83,30,60),(8,82,31,59),(9,81,32,58),(10,80,33,57),(11,79,34,56),(12,78,35,55),(13,77,36,54),(14,76,37,53),(15,75,38,52),(16,74,39,51),(17,73,40,50),(18,72,41,49),(19,71,42,48),(20,70,43,47),(21,69,44,92),(22,68,45,91),(23,67,46,90)]])
Dic23 is a maximal subgroup of
Dic46 C4×D23 C23⋊D4 Dic69 Dic115 C23⋊F5
Dic23 is a maximal quotient of C23⋊C8 Dic69 Dic115 C23⋊F5
Matrix representation of Dic23 ►in GL2(𝔽47) generated by
41 | 30 |
17 | 1 |
31 | 17 |
7 | 16 |
G:=sub<GL(2,GF(47))| [41,17,30,1],[31,7,17,16] >;
Dic23 in GAP, Magma, Sage, TeX
{\rm Dic}_{23}
% in TeX
G:=Group("Dic23");
// GroupNames label
G:=SmallGroup(92,1);
// by ID
G=gap.SmallGroup(92,1);
# by ID
G:=PCGroup([3,-2,-2,-23,6,794]);
// Polycyclic
G:=Group<a,b|a^46=1,b^2=a^23,b*a*b^-1=a^-1>;
// generators/relations
Export
Subgroup lattice of Dic23 in TeX
Character table of Dic23 in TeX