Dicyclic groups Dicn

Dicyclic or binary dihedral group Dicn is a group of order 4n, which the unique non-split extension C2n.C2 with C2 acting by -1. (The split extension in this case is the dihedral group.) Alternatively, it is a split extension
odd  n Dicn=CnC4
even n=2km Dicn=CmQ2k+2
with action by -1 in both cases. It can be realised as a group of complex matrices generated by

ζ2n 0
0 ζ2n-1
   and   
0 -1
1 0

where ζ2n=e2πi/2n is a primitive 2n-th root of unity.
Q8=Dic2Dic3Q16=Dic4Dic5Dic6Dic7Q32=Dic8Dic9Dic10Dic11Dic12Dic13Dic14Dic15Q64=Dic16Dic17Dic18Dic19Dic20Dic21Dic22Dic23Dic24Dic25Dic26Dic27Dic28Dic29Dic30Dic31Q128=Dic32Dic33Dic34Dic35Dic36Dic37Dic38Dic39Dic40Dic41Dic42Dic43Dic44Dic45Dic46Dic47Dic48Dic49Dic50Dic51Dic52Dic53Dic54Dic55Dic56Dic57Dic58Dic59Dic60Dic61Dic62Dic63Dic65Dic66Dic67Dic68Dic69Dic70Dic71Dic72Dic73Dic74Dic75Dic76Dic77Dic78Dic79Dic80Dic81Dic82Dic83Dic84Dic85Dic86Dic87Dic88Dic89Dic90Dic91Dic92Dic93Dic94Dic95Dic97Dic98Dic99Dic100Dic101Dic102Dic103Dic104Dic105Dic106Dic107Dic108Dic109Dic110Dic111Dic112Dic113Dic114Dic115Dic116Dic117Dic118Dic119Dic120Dic121Dic122Dic123Dic124Dic125
׿
×
𝔽