Extensions 1→N→G→Q→1 with N=C3×Q16 and Q=C2

Direct product G=N×Q with N=C3×Q16 and Q=C2

Semidirect products G=N:Q with N=C3×Q16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×Q16)⋊1C2 = C8.6D6φ: C2/C1C2 ⊆ Out C3×Q16484+(C3xQ16):1C296,35
(C3×Q16)⋊2C2 = S3×Q16φ: C2/C1C2 ⊆ Out C3×Q16484-(C3xQ16):2C296,124
(C3×Q16)⋊3C2 = D24⋊C2φ: C2/C1C2 ⊆ Out C3×Q16484+(C3xQ16):3C296,126
(C3×Q16)⋊4C2 = Q16⋊S3φ: C2/C1C2 ⊆ Out C3×Q16484(C3xQ16):4C296,125
(C3×Q16)⋊5C2 = C3×SD32φ: C2/C1C2 ⊆ Out C3×Q16482(C3xQ16):5C296,62
(C3×Q16)⋊6C2 = C3×C8.C22φ: C2/C1C2 ⊆ Out C3×Q16484(C3xQ16):6C296,184
(C3×Q16)⋊7C2 = C3×C4○D8φ: trivial image482(C3xQ16):7C296,182

Non-split extensions G=N.Q with N=C3×Q16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×Q16).1C2 = C3⋊Q32φ: C2/C1C2 ⊆ Out C3×Q16964-(C3xQ16).1C296,36
(C3×Q16).2C2 = C3×Q32φ: C2/C1C2 ⊆ Out C3×Q16962(C3xQ16).2C296,63