Copied to
clipboard

G = C3xSD32order 96 = 25·3

Direct product of C3 and SD32

direct product, metacyclic, nilpotent (class 4), monomial, 2-elementary

Aliases: C3xSD32, D8.C6, C48:4C2, C16:2C6, Q16:1C6, C6.16D8, C12.37D4, C24.20C22, C8.3(C2xC6), C4.2(C3xD4), C2.4(C3xD8), (C3xQ16):5C2, (C3xD8).2C2, SmallGroup(96,62)

Series: Derived Chief Lower central Upper central

C1C8 — C3xSD32
C1C2C4C8C24C3xQ16 — C3xSD32
C1C2C4C8 — C3xSD32
C1C6C12C24 — C3xSD32

Generators and relations for C3xSD32
 G = < a,b,c | a3=b16=c2=1, ab=ba, ac=ca, cbc=b7 >

Subgroups: 56 in 26 conjugacy classes, 16 normal (all characteristic)
Quotients: C1, C2, C3, C22, C6, D4, C2xC6, D8, C3xD4, SD32, C3xD8, C3xSD32
8C2
4C22
4C4
8C6
2D4
2Q8
4C12
4C2xC6
2C3xQ8
2C3xD4

Smallest permutation representation of C3xSD32
On 48 points
Generators in S48
(1 39 21)(2 40 22)(3 41 23)(4 42 24)(5 43 25)(6 44 26)(7 45 27)(8 46 28)(9 47 29)(10 48 30)(11 33 31)(12 34 32)(13 35 17)(14 36 18)(15 37 19)(16 38 20)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(2 8)(3 15)(4 6)(5 13)(7 11)(10 16)(12 14)(17 25)(18 32)(19 23)(20 30)(22 28)(24 26)(27 31)(33 45)(34 36)(35 43)(37 41)(38 48)(40 46)(42 44)

G:=sub<Sym(48)| (1,39,21)(2,40,22)(3,41,23)(4,42,24)(5,43,25)(6,44,26)(7,45,27)(8,46,28)(9,47,29)(10,48,30)(11,33,31)(12,34,32)(13,35,17)(14,36,18)(15,37,19)(16,38,20), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (2,8)(3,15)(4,6)(5,13)(7,11)(10,16)(12,14)(17,25)(18,32)(19,23)(20,30)(22,28)(24,26)(27,31)(33,45)(34,36)(35,43)(37,41)(38,48)(40,46)(42,44)>;

G:=Group( (1,39,21)(2,40,22)(3,41,23)(4,42,24)(5,43,25)(6,44,26)(7,45,27)(8,46,28)(9,47,29)(10,48,30)(11,33,31)(12,34,32)(13,35,17)(14,36,18)(15,37,19)(16,38,20), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (2,8)(3,15)(4,6)(5,13)(7,11)(10,16)(12,14)(17,25)(18,32)(19,23)(20,30)(22,28)(24,26)(27,31)(33,45)(34,36)(35,43)(37,41)(38,48)(40,46)(42,44) );

G=PermutationGroup([[(1,39,21),(2,40,22),(3,41,23),(4,42,24),(5,43,25),(6,44,26),(7,45,27),(8,46,28),(9,47,29),(10,48,30),(11,33,31),(12,34,32),(13,35,17),(14,36,18),(15,37,19),(16,38,20)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(2,8),(3,15),(4,6),(5,13),(7,11),(10,16),(12,14),(17,25),(18,32),(19,23),(20,30),(22,28),(24,26),(27,31),(33,45),(34,36),(35,43),(37,41),(38,48),(40,46),(42,44)]])

C3xSD32 is a maximal subgroup of   D48:C2  SD32:S3  D6.2D8

33 conjugacy classes

class 1 2A2B3A3B4A4B6A6B6C6D8A8B12A12B12C12D16A16B16C16D24A24B24C24D48A···48H
order122334466668812121212161616162424242448···48
size11811281188222288222222222···2

33 irreducible representations

dim11111111222222
type++++++
imageC1C2C2C2C3C6C6C6D4D8C3xD4SD32C3xD8C3xSD32
kernelC3xSD32C48C3xD8C3xQ16SD32C16D8Q16C12C6C4C3C2C1
# reps11112222122448

Matrix representation of C3xSD32 in GL2(F7) generated by

20
02
,
01
16
,
16
06
G:=sub<GL(2,GF(7))| [2,0,0,2],[0,1,1,6],[1,0,6,6] >;

C3xSD32 in GAP, Magma, Sage, TeX

C_3\times {\rm SD}_{32}
% in TeX

G:=Group("C3xSD32");
// GroupNames label

G:=SmallGroup(96,62);
// by ID

G=gap.SmallGroup(96,62);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,-2,-2,288,169,867,441,165,2164,1090,88]);
// Polycyclic

G:=Group<a,b,c|a^3=b^16=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^7>;
// generators/relations

Export

Subgroup lattice of C3xSD32 in TeX

׿
x
:
Z
F
o
wr
Q
<