direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: S3×Q16, C8.9D6, Q8.8D6, D6.14D4, Dic12⋊5C2, C12.8C23, C24.7C22, Dic3.5D4, Dic6.4C22, C3⋊2(C2×Q16), (S3×Q8).C2, (S3×C8).1C2, (C3×Q16)⋊2C2, C3⋊Q16⋊3C2, C6.34(C2×D4), C2.22(S3×D4), C3⋊C8.7C22, C4.8(C22×S3), (C3×Q8).3C22, (C4×S3).11C22, SmallGroup(96,124)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for S3×Q16
G = < a,b,c,d | a3=b2=c8=1, d2=c4, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >
Subgroups: 130 in 60 conjugacy classes, 29 normal (17 characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, C6, C8, C8, C2×C4, Q8, Q8, Dic3, Dic3, C12, C12, D6, C2×C8, Q16, Q16, C2×Q8, C3⋊C8, C24, Dic6, Dic6, C4×S3, C4×S3, C3×Q8, C2×Q16, S3×C8, Dic12, C3⋊Q16, C3×Q16, S3×Q8, S3×Q16
Quotients: C1, C2, C22, S3, D4, C23, D6, Q16, C2×D4, C22×S3, C2×Q16, S3×D4, S3×Q16
Character table of S3×Q16
class | 1 | 2A | 2B | 2C | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 6 | 8A | 8B | 8C | 8D | 12A | 12B | 12C | 24A | 24B | |
size | 1 | 1 | 3 | 3 | 2 | 2 | 4 | 4 | 6 | 12 | 12 | 2 | 2 | 2 | 6 | 6 | 4 | 8 | 8 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | 2 | 0 | 0 | 0 | -1 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ11 | 2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 0 | 0 | -1 | 2 | -2 | 2 | 0 | 0 | 0 | -1 | -2 | -2 | 0 | 0 | -1 | -1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ13 | 2 | 2 | 0 | 0 | -1 | 2 | -2 | -2 | 0 | 0 | 0 | -1 | 2 | 2 | 0 | 0 | -1 | 1 | 1 | -1 | -1 | orthogonal lifted from D6 |
ρ14 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | -2 | 0 | 0 | 0 | -1 | -2 | -2 | 0 | 0 | -1 | 1 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ15 | 2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -√2 | √2 | -√2 | √2 | 0 | 0 | 0 | √2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ16 | 2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | √2 | -√2 | √2 | -√2 | 0 | 0 | 0 | -√2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ17 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | √2 | -√2 | -√2 | √2 | 0 | 0 | 0 | -√2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ18 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -√2 | √2 | √2 | -√2 | 0 | 0 | 0 | √2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ19 | 4 | 4 | 0 | 0 | -2 | -4 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from S3×D4 |
ρ20 | 4 | -4 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | symplectic faithful, Schur index 2 |
ρ21 | 4 | -4 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | symplectic faithful, Schur index 2 |
(1 35 46)(2 36 47)(3 37 48)(4 38 41)(5 39 42)(6 40 43)(7 33 44)(8 34 45)(9 30 19)(10 31 20)(11 32 21)(12 25 22)(13 26 23)(14 27 24)(15 28 17)(16 29 18)
(1 5)(2 6)(3 7)(4 8)(9 26)(10 27)(11 28)(12 29)(13 30)(14 31)(15 32)(16 25)(17 21)(18 22)(19 23)(20 24)(33 48)(34 41)(35 42)(36 43)(37 44)(38 45)(39 46)(40 47)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 23 5 19)(2 22 6 18)(3 21 7 17)(4 20 8 24)(9 35 13 39)(10 34 14 38)(11 33 15 37)(12 40 16 36)(25 43 29 47)(26 42 30 46)(27 41 31 45)(28 48 32 44)
G:=sub<Sym(48)| (1,35,46)(2,36,47)(3,37,48)(4,38,41)(5,39,42)(6,40,43)(7,33,44)(8,34,45)(9,30,19)(10,31,20)(11,32,21)(12,25,22)(13,26,23)(14,27,24)(15,28,17)(16,29,18), (1,5)(2,6)(3,7)(4,8)(9,26)(10,27)(11,28)(12,29)(13,30)(14,31)(15,32)(16,25)(17,21)(18,22)(19,23)(20,24)(33,48)(34,41)(35,42)(36,43)(37,44)(38,45)(39,46)(40,47), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,23,5,19)(2,22,6,18)(3,21,7,17)(4,20,8,24)(9,35,13,39)(10,34,14,38)(11,33,15,37)(12,40,16,36)(25,43,29,47)(26,42,30,46)(27,41,31,45)(28,48,32,44)>;
G:=Group( (1,35,46)(2,36,47)(3,37,48)(4,38,41)(5,39,42)(6,40,43)(7,33,44)(8,34,45)(9,30,19)(10,31,20)(11,32,21)(12,25,22)(13,26,23)(14,27,24)(15,28,17)(16,29,18), (1,5)(2,6)(3,7)(4,8)(9,26)(10,27)(11,28)(12,29)(13,30)(14,31)(15,32)(16,25)(17,21)(18,22)(19,23)(20,24)(33,48)(34,41)(35,42)(36,43)(37,44)(38,45)(39,46)(40,47), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,23,5,19)(2,22,6,18)(3,21,7,17)(4,20,8,24)(9,35,13,39)(10,34,14,38)(11,33,15,37)(12,40,16,36)(25,43,29,47)(26,42,30,46)(27,41,31,45)(28,48,32,44) );
G=PermutationGroup([[(1,35,46),(2,36,47),(3,37,48),(4,38,41),(5,39,42),(6,40,43),(7,33,44),(8,34,45),(9,30,19),(10,31,20),(11,32,21),(12,25,22),(13,26,23),(14,27,24),(15,28,17),(16,29,18)], [(1,5),(2,6),(3,7),(4,8),(9,26),(10,27),(11,28),(12,29),(13,30),(14,31),(15,32),(16,25),(17,21),(18,22),(19,23),(20,24),(33,48),(34,41),(35,42),(36,43),(37,44),(38,45),(39,46),(40,47)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,23,5,19),(2,22,6,18),(3,21,7,17),(4,20,8,24),(9,35,13,39),(10,34,14,38),(11,33,15,37),(12,40,16,36),(25,43,29,47),(26,42,30,46),(27,41,31,45),(28,48,32,44)]])
S3×Q16 is a maximal subgroup of
SD32⋊S3 Q32⋊S3 D12.30D4 D8.10D6 SD16.D6 C24.23D6 Dic6.9D6 Dic10.D6 D15⋊Q16
S3×Q16 is a maximal quotient of
Dic3⋊4Q16 Dic3.1Q16 Q8⋊3Dic6 Dic3⋊Q16 D6⋊Q16 D6.Q16 D6⋊1Q16 Dic3⋊5Q16 C24⋊2Q8 Dic3.Q16 D6.2Q16 D6⋊2Q16 Dic3⋊3Q16 C24.26D4 D6⋊5Q16 D6⋊3Q16 C24.23D6 Dic6.9D6 Dic10.D6 D15⋊Q16
Matrix representation of S3×Q16 ►in GL4(𝔽7) generated by
3 | 0 | 3 | 1 |
6 | 4 | 1 | 2 |
3 | 0 | 4 | 3 |
6 | 0 | 4 | 1 |
5 | 1 | 1 | 1 |
2 | 2 | 0 | 4 |
2 | 3 | 6 | 4 |
0 | 4 | 3 | 1 |
3 | 3 | 0 | 2 |
1 | 3 | 1 | 1 |
2 | 2 | 6 | 3 |
3 | 4 | 2 | 3 |
1 | 1 | 0 | 1 |
5 | 0 | 4 | 4 |
4 | 3 | 4 | 2 |
0 | 6 | 3 | 2 |
G:=sub<GL(4,GF(7))| [3,6,3,6,0,4,0,0,3,1,4,4,1,2,3,1],[5,2,2,0,1,2,3,4,1,0,6,3,1,4,4,1],[3,1,2,3,3,3,2,4,0,1,6,2,2,1,3,3],[1,5,4,0,1,0,3,6,0,4,4,3,1,4,2,2] >;
S3×Q16 in GAP, Magma, Sage, TeX
S_3\times Q_{16}
% in TeX
G:=Group("S3xQ16");
// GroupNames label
G:=SmallGroup(96,124);
// by ID
G=gap.SmallGroup(96,124);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,103,116,86,297,159,69,2309]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^2=c^8=1,d^2=c^4,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations
Export