Copied to
clipboard

G = D24⋊C2order 96 = 25·3

5th semidirect product of D24 and C2 acting faithfully

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D245C2, Q163S3, Dic3Q16, D6.3D4, C8.10D6, Q8.10D6, C24.8C22, C12.10C23, Dic3.14D4, D12.5C22, (S3×C8)⋊3C2, C34(C4○D8), (C3×Q16)⋊3C2, C2.24(S3×D4), C6.36(C2×D4), C3⋊C8.8C22, Q82S34C2, Q83S33C2, C4.10(C22×S3), (C3×Q8).5C22, (C4×S3).12C22, SmallGroup(96,126)

Series: Derived Chief Lower central Upper central

C1C12 — D24⋊C2
C1C3C6C12C4×S3Q83S3 — D24⋊C2
C3C6C12 — D24⋊C2
C1C2C4Q16

Generators and relations for D24⋊C2
 G = < a,b,c | a24=b2=c2=1, bab=a-1, cac=a17, cbc=a4b >

Subgroups: 162 in 62 conjugacy classes, 27 normal (17 characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, C6, C8, C8, C2×C4, D4, Q8, Dic3, C12, C12, D6, D6, C2×C8, D8, SD16, Q16, C4○D4, C3⋊C8, C24, C4×S3, C4×S3, D12, D12, C3×Q8, C4○D8, S3×C8, D24, Q82S3, C3×Q16, Q83S3, D24⋊C2
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C22×S3, C4○D8, S3×D4, D24⋊C2

Character table of D24⋊C2

 class 12A2B2C2D34A4B4C4D4E68A8B8C8D12A12B12C24A24B
 size 11612122233442226648844
ρ1111111111111111111111    trivial
ρ211-11111-1-1-1-1111-1-11-1-111    linear of order 2
ρ3111-1111111-11-1-1-1-11-11-1-1    linear of order 2
ρ41111-11111-111-1-1-1-111-1-1-1    linear of order 2
ρ511-1-1-111-1-111111-1-111111    linear of order 2
ρ611-1-1111-1-1-111-1-11111-1-1-1    linear of order 2
ρ711-11-111-1-11-11-1-1111-11-1-1    linear of order 2
ρ8111-1-11111-1-1111111-1-111    linear of order 2
ρ922000-1200-22-1-2-200-1-1111    orthogonal lifted from D6
ρ1022000-1200-2-2-12200-111-1-1    orthogonal lifted from D6
ρ11222002-2-2-20020000-20000    orthogonal lifted from D4
ρ1222-2002-2220020000-20000    orthogonal lifted from D4
ρ1322000-120022-12200-1-1-1-1-1    orthogonal lifted from S3
ρ1422000-12002-2-1-2-200-11-111    orthogonal lifted from D6
ρ152-2000202i-2i00-22-2--2-2000-22    complex lifted from C4○D8
ρ162-200020-2i2i00-2-22--2-20002-2    complex lifted from C4○D8
ρ172-200020-2i2i00-22-2-2--2000-22    complex lifted from C4○D8
ρ182-2000202i-2i00-2-22-2--20002-2    complex lifted from C4○D8
ρ1944000-2-40000-2000020000    orthogonal lifted from S3×D4
ρ204-4000-200000222-22000002-2    orthogonal faithful
ρ214-4000-2000002-222200000-22    orthogonal faithful

Smallest permutation representation of D24⋊C2
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 24)(2 23)(3 22)(4 21)(5 20)(6 19)(7 18)(8 17)(9 16)(10 15)(11 14)(12 13)(25 44)(26 43)(27 42)(28 41)(29 40)(30 39)(31 38)(32 37)(33 36)(34 35)(45 48)(46 47)
(1 29)(2 46)(3 39)(4 32)(5 25)(6 42)(7 35)(8 28)(9 45)(10 38)(11 31)(12 48)(13 41)(14 34)(15 27)(16 44)(17 37)(18 30)(19 47)(20 40)(21 33)(22 26)(23 43)(24 36)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,24)(2,23)(3,22)(4,21)(5,20)(6,19)(7,18)(8,17)(9,16)(10,15)(11,14)(12,13)(25,44)(26,43)(27,42)(28,41)(29,40)(30,39)(31,38)(32,37)(33,36)(34,35)(45,48)(46,47), (1,29)(2,46)(3,39)(4,32)(5,25)(6,42)(7,35)(8,28)(9,45)(10,38)(11,31)(12,48)(13,41)(14,34)(15,27)(16,44)(17,37)(18,30)(19,47)(20,40)(21,33)(22,26)(23,43)(24,36)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,24)(2,23)(3,22)(4,21)(5,20)(6,19)(7,18)(8,17)(9,16)(10,15)(11,14)(12,13)(25,44)(26,43)(27,42)(28,41)(29,40)(30,39)(31,38)(32,37)(33,36)(34,35)(45,48)(46,47), (1,29)(2,46)(3,39)(4,32)(5,25)(6,42)(7,35)(8,28)(9,45)(10,38)(11,31)(12,48)(13,41)(14,34)(15,27)(16,44)(17,37)(18,30)(19,47)(20,40)(21,33)(22,26)(23,43)(24,36) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,24),(2,23),(3,22),(4,21),(5,20),(6,19),(7,18),(8,17),(9,16),(10,15),(11,14),(12,13),(25,44),(26,43),(27,42),(28,41),(29,40),(30,39),(31,38),(32,37),(33,36),(34,35),(45,48),(46,47)], [(1,29),(2,46),(3,39),(4,32),(5,25),(6,42),(7,35),(8,28),(9,45),(10,38),(11,31),(12,48),(13,41),(14,34),(15,27),(16,44),(17,37),(18,30),(19,47),(20,40),(21,33),(22,26),(23,43),(24,36)]])

D24⋊C2 is a maximal subgroup of
D48⋊C2  D6.2D8  Q32⋊S3  D485C2  D12.30D4  S3×C4○D8  D815D6  D24⋊C22  C24.C23  D725C2  D6.3D12  D245S3  D12.13D6  D12.14D6  C24.28D6  Dic3.5S4  D1205C2  D245D5  Dic10.27D6  D12.D10  D1208C2
D24⋊C2 is a maximal quotient of
Dic37SD16  Q8.3Dic6  Q8⋊C4⋊S3  C4⋊C4.150D6  D62SD16  Q84D12  D6⋊C8.C2  D12.12D4  Dic35D8  C8.6Dic6  C8.27(C4×S3)  D62D8  C2.D8⋊S3  D12.2Q8  Dic3×Q16  (C2×Q16)⋊S3  D12.17D4  D63Q16  C24.28D4  D725C2  D6.3D12  D245S3  D12.13D6  D12.14D6  C24.28D6  D1205C2  D245D5  Dic10.27D6  D12.D10  D1208C2

Matrix representation of D24⋊C2 in GL4(𝔽7) generated by

5346
4200
5631
6140
,
6611
6444
5301
1054
,
2524
4422
5156
4613
G:=sub<GL(4,GF(7))| [5,4,5,6,3,2,6,1,4,0,3,4,6,0,1,0],[6,6,5,1,6,4,3,0,1,4,0,5,1,4,1,4],[2,4,5,4,5,4,1,6,2,2,5,1,4,2,6,3] >;

D24⋊C2 in GAP, Magma, Sage, TeX

D_{24}\rtimes C_2
% in TeX

G:=Group("D24:C2");
// GroupNames label

G:=SmallGroup(96,126);
// by ID

G=gap.SmallGroup(96,126);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-3,217,103,362,116,86,297,159,69,2309]);
// Polycyclic

G:=Group<a,b,c|a^24=b^2=c^2=1,b*a*b=a^-1,c*a*c=a^17,c*b*c=a^4*b>;
// generators/relations

Export

Character table of D24⋊C2 in TeX

׿
×
𝔽