metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D24⋊5C2, Q16⋊3S3, Dic3○Q16, D6.3D4, C8.10D6, Q8.10D6, C24.8C22, C12.10C23, Dic3.14D4, D12.5C22, (S3×C8)⋊3C2, C3⋊4(C4○D8), (C3×Q16)⋊3C2, C2.24(S3×D4), C6.36(C2×D4), C3⋊C8.8C22, Q8⋊2S3⋊4C2, Q8⋊3S3⋊3C2, C4.10(C22×S3), (C3×Q8).5C22, (C4×S3).12C22, SmallGroup(96,126)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D24⋊C2
G = < a,b,c | a24=b2=c2=1, bab=a-1, cac=a17, cbc=a4b >
Subgroups: 162 in 62 conjugacy classes, 27 normal (17 characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, C6, C8, C8, C2×C4, D4, Q8, Dic3, C12, C12, D6, D6, C2×C8, D8, SD16, Q16, C4○D4, C3⋊C8, C24, C4×S3, C4×S3, D12, D12, C3×Q8, C4○D8, S3×C8, D24, Q8⋊2S3, C3×Q16, Q8⋊3S3, D24⋊C2
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C22×S3, C4○D8, S3×D4, D24⋊C2
Character table of D24⋊C2
class | 1 | 2A | 2B | 2C | 2D | 3 | 4A | 4B | 4C | 4D | 4E | 6 | 8A | 8B | 8C | 8D | 12A | 12B | 12C | 24A | 24B | |
size | 1 | 1 | 6 | 12 | 12 | 2 | 2 | 3 | 3 | 4 | 4 | 2 | 2 | 2 | 6 | 6 | 4 | 8 | 8 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 0 | 0 | 0 | -1 | 2 | 0 | 0 | -2 | 2 | -1 | -2 | -2 | 0 | 0 | -1 | -1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ10 | 2 | 2 | 0 | 0 | 0 | -1 | 2 | 0 | 0 | -2 | -2 | -1 | 2 | 2 | 0 | 0 | -1 | 1 | 1 | -1 | -1 | orthogonal lifted from D6 |
ρ11 | 2 | 2 | 2 | 0 | 0 | 2 | -2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | -2 | 0 | 0 | 2 | -2 | 2 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 0 | 0 | 0 | -1 | 2 | 0 | 0 | 2 | 2 | -1 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ14 | 2 | 2 | 0 | 0 | 0 | -1 | 2 | 0 | 0 | 2 | -2 | -1 | -2 | -2 | 0 | 0 | -1 | 1 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ15 | 2 | -2 | 0 | 0 | 0 | 2 | 0 | 2i | -2i | 0 | 0 | -2 | √2 | -√2 | -√-2 | √-2 | 0 | 0 | 0 | -√2 | √2 | complex lifted from C4○D8 |
ρ16 | 2 | -2 | 0 | 0 | 0 | 2 | 0 | -2i | 2i | 0 | 0 | -2 | -√2 | √2 | -√-2 | √-2 | 0 | 0 | 0 | √2 | -√2 | complex lifted from C4○D8 |
ρ17 | 2 | -2 | 0 | 0 | 0 | 2 | 0 | -2i | 2i | 0 | 0 | -2 | √2 | -√2 | √-2 | -√-2 | 0 | 0 | 0 | -√2 | √2 | complex lifted from C4○D8 |
ρ18 | 2 | -2 | 0 | 0 | 0 | 2 | 0 | 2i | -2i | 0 | 0 | -2 | -√2 | √2 | √-2 | -√-2 | 0 | 0 | 0 | √2 | -√2 | complex lifted from C4○D8 |
ρ19 | 4 | 4 | 0 | 0 | 0 | -2 | -4 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from S3×D4 |
ρ20 | 4 | -4 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | orthogonal faithful |
ρ21 | 4 | -4 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | orthogonal faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 24)(2 23)(3 22)(4 21)(5 20)(6 19)(7 18)(8 17)(9 16)(10 15)(11 14)(12 13)(25 44)(26 43)(27 42)(28 41)(29 40)(30 39)(31 38)(32 37)(33 36)(34 35)(45 48)(46 47)
(1 29)(2 46)(3 39)(4 32)(5 25)(6 42)(7 35)(8 28)(9 45)(10 38)(11 31)(12 48)(13 41)(14 34)(15 27)(16 44)(17 37)(18 30)(19 47)(20 40)(21 33)(22 26)(23 43)(24 36)
G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,24)(2,23)(3,22)(4,21)(5,20)(6,19)(7,18)(8,17)(9,16)(10,15)(11,14)(12,13)(25,44)(26,43)(27,42)(28,41)(29,40)(30,39)(31,38)(32,37)(33,36)(34,35)(45,48)(46,47), (1,29)(2,46)(3,39)(4,32)(5,25)(6,42)(7,35)(8,28)(9,45)(10,38)(11,31)(12,48)(13,41)(14,34)(15,27)(16,44)(17,37)(18,30)(19,47)(20,40)(21,33)(22,26)(23,43)(24,36)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,24)(2,23)(3,22)(4,21)(5,20)(6,19)(7,18)(8,17)(9,16)(10,15)(11,14)(12,13)(25,44)(26,43)(27,42)(28,41)(29,40)(30,39)(31,38)(32,37)(33,36)(34,35)(45,48)(46,47), (1,29)(2,46)(3,39)(4,32)(5,25)(6,42)(7,35)(8,28)(9,45)(10,38)(11,31)(12,48)(13,41)(14,34)(15,27)(16,44)(17,37)(18,30)(19,47)(20,40)(21,33)(22,26)(23,43)(24,36) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,24),(2,23),(3,22),(4,21),(5,20),(6,19),(7,18),(8,17),(9,16),(10,15),(11,14),(12,13),(25,44),(26,43),(27,42),(28,41),(29,40),(30,39),(31,38),(32,37),(33,36),(34,35),(45,48),(46,47)], [(1,29),(2,46),(3,39),(4,32),(5,25),(6,42),(7,35),(8,28),(9,45),(10,38),(11,31),(12,48),(13,41),(14,34),(15,27),(16,44),(17,37),(18,30),(19,47),(20,40),(21,33),(22,26),(23,43),(24,36)]])
D24⋊C2 is a maximal subgroup of
D48⋊C2 D6.2D8 Q32⋊S3 D48⋊5C2 D12.30D4 S3×C4○D8 D8⋊15D6 D24⋊C22 C24.C23 D72⋊5C2 D6.3D12 D24⋊5S3 D12.13D6 D12.14D6 C24.28D6 Dic3.5S4 D120⋊5C2 D24⋊5D5 Dic10.27D6 D12.D10 D120⋊8C2
D24⋊C2 is a maximal quotient of
Dic3⋊7SD16 Q8.3Dic6 Q8⋊C4⋊S3 C4⋊C4.150D6 D6⋊2SD16 Q8⋊4D12 D6⋊C8.C2 D12.12D4 Dic3⋊5D8 C8.6Dic6 C8.27(C4×S3) D6⋊2D8 C2.D8⋊S3 D12.2Q8 Dic3×Q16 (C2×Q16)⋊S3 D12.17D4 D6⋊3Q16 C24.28D4 D72⋊5C2 D6.3D12 D24⋊5S3 D12.13D6 D12.14D6 C24.28D6 D120⋊5C2 D24⋊5D5 Dic10.27D6 D12.D10 D120⋊8C2
Matrix representation of D24⋊C2 ►in GL4(𝔽7) generated by
5 | 3 | 4 | 6 |
4 | 2 | 0 | 0 |
5 | 6 | 3 | 1 |
6 | 1 | 4 | 0 |
6 | 6 | 1 | 1 |
6 | 4 | 4 | 4 |
5 | 3 | 0 | 1 |
1 | 0 | 5 | 4 |
2 | 5 | 2 | 4 |
4 | 4 | 2 | 2 |
5 | 1 | 5 | 6 |
4 | 6 | 1 | 3 |
G:=sub<GL(4,GF(7))| [5,4,5,6,3,2,6,1,4,0,3,4,6,0,1,0],[6,6,5,1,6,4,3,0,1,4,0,5,1,4,1,4],[2,4,5,4,5,4,1,6,2,2,5,1,4,2,6,3] >;
D24⋊C2 in GAP, Magma, Sage, TeX
D_{24}\rtimes C_2
% in TeX
G:=Group("D24:C2");
// GroupNames label
G:=SmallGroup(96,126);
// by ID
G=gap.SmallGroup(96,126);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,217,103,362,116,86,297,159,69,2309]);
// Polycyclic
G:=Group<a,b,c|a^24=b^2=c^2=1,b*a*b=a^-1,c*a*c=a^17,c*b*c=a^4*b>;
// generators/relations
Export