Copied to
clipboard

G = C3⋊Q32order 96 = 25·3

The semidirect product of C3 and Q32 acting via Q32/Q16=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C32Q32, C8.7D6, Q16.S3, C12.6D4, C6.11D8, C24.5C22, Dic12.2C2, C3⋊C16.C2, C2.7(D4⋊S3), C4.4(C3⋊D4), (C3×Q16).1C2, SmallGroup(96,36)

Series: Derived Chief Lower central Upper central

C1C24 — C3⋊Q32
C1C3C6C12C24Dic12 — C3⋊Q32
C3C6C12C24 — C3⋊Q32
C1C2C4C8Q16

Generators and relations for C3⋊Q32
 G = < a,b,c | a3=b16=1, c2=b8, bab-1=a-1, ac=ca, cbc-1=b-1 >

4C4
12C4
2Q8
6Q8
4Dic3
4C12
3C16
3Q16
2Dic6
2C3×Q8
3Q32

Character table of C3⋊Q32

 class 1234A4B4C68A8B12A12B12C16A16B16C16D24A24B
 size 1122824222488666644
ρ1111111111111111111    trivial
ρ21111-1-11111-1-1111111    linear of order 2
ρ311111-1111111-1-1-1-111    linear of order 2
ρ41111-111111-1-1-1-1-1-111    linear of order 2
ρ522-12-20-122-1110000-1-1    orthogonal lifted from D6
ρ622-1220-122-1-1-10000-1-1    orthogonal lifted from S3
ρ72222002-2-22000000-2-2    orthogonal lifted from D4
ρ8222-200200-200-22-2200    orthogonal lifted from D8
ρ9222-200200-2002-22-200    orthogonal lifted from D8
ρ102-22000-2-22000165163ζ1615169ζ16516316151692-2    symplectic lifted from Q32, Schur index 2
ρ112-22000-22-20001615169165163ζ1615169ζ165163-22    symplectic lifted from Q32, Schur index 2
ρ122-22000-2-22000ζ1651631615169165163ζ16151692-2    symplectic lifted from Q32, Schur index 2
ρ132-22000-22-2000ζ1615169ζ1651631615169165163-22    symplectic lifted from Q32, Schur index 2
ρ1422-1200-1-2-2-1--3-3000011    complex lifted from C3⋊D4
ρ1522-1200-1-2-2-1-3--3000011    complex lifted from C3⋊D4
ρ1644-2-400-200200000000    orthogonal lifted from D4⋊S3, Schur index 2
ρ174-4-2000222-2200000002-2    symplectic faithful, Schur index 2
ρ184-4-20002-22220000000-22    symplectic faithful, Schur index 2

Smallest permutation representation of C3⋊Q32
Regular action on 96 points
Generators in S96
(1 30 49)(2 50 31)(3 32 51)(4 52 17)(5 18 53)(6 54 19)(7 20 55)(8 56 21)(9 22 57)(10 58 23)(11 24 59)(12 60 25)(13 26 61)(14 62 27)(15 28 63)(16 64 29)(33 84 73)(34 74 85)(35 86 75)(36 76 87)(37 88 77)(38 78 89)(39 90 79)(40 80 91)(41 92 65)(42 66 93)(43 94 67)(44 68 95)(45 96 69)(46 70 81)(47 82 71)(48 72 83)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
(1 36 9 44)(2 35 10 43)(3 34 11 42)(4 33 12 41)(5 48 13 40)(6 47 14 39)(7 46 15 38)(8 45 16 37)(17 73 25 65)(18 72 26 80)(19 71 27 79)(20 70 28 78)(21 69 29 77)(22 68 30 76)(23 67 31 75)(24 66 32 74)(49 87 57 95)(50 86 58 94)(51 85 59 93)(52 84 60 92)(53 83 61 91)(54 82 62 90)(55 81 63 89)(56 96 64 88)

G:=sub<Sym(96)| (1,30,49)(2,50,31)(3,32,51)(4,52,17)(5,18,53)(6,54,19)(7,20,55)(8,56,21)(9,22,57)(10,58,23)(11,24,59)(12,60,25)(13,26,61)(14,62,27)(15,28,63)(16,64,29)(33,84,73)(34,74,85)(35,86,75)(36,76,87)(37,88,77)(38,78,89)(39,90,79)(40,80,91)(41,92,65)(42,66,93)(43,94,67)(44,68,95)(45,96,69)(46,70,81)(47,82,71)(48,72,83), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,36,9,44)(2,35,10,43)(3,34,11,42)(4,33,12,41)(5,48,13,40)(6,47,14,39)(7,46,15,38)(8,45,16,37)(17,73,25,65)(18,72,26,80)(19,71,27,79)(20,70,28,78)(21,69,29,77)(22,68,30,76)(23,67,31,75)(24,66,32,74)(49,87,57,95)(50,86,58,94)(51,85,59,93)(52,84,60,92)(53,83,61,91)(54,82,62,90)(55,81,63,89)(56,96,64,88)>;

G:=Group( (1,30,49)(2,50,31)(3,32,51)(4,52,17)(5,18,53)(6,54,19)(7,20,55)(8,56,21)(9,22,57)(10,58,23)(11,24,59)(12,60,25)(13,26,61)(14,62,27)(15,28,63)(16,64,29)(33,84,73)(34,74,85)(35,86,75)(36,76,87)(37,88,77)(38,78,89)(39,90,79)(40,80,91)(41,92,65)(42,66,93)(43,94,67)(44,68,95)(45,96,69)(46,70,81)(47,82,71)(48,72,83), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,36,9,44)(2,35,10,43)(3,34,11,42)(4,33,12,41)(5,48,13,40)(6,47,14,39)(7,46,15,38)(8,45,16,37)(17,73,25,65)(18,72,26,80)(19,71,27,79)(20,70,28,78)(21,69,29,77)(22,68,30,76)(23,67,31,75)(24,66,32,74)(49,87,57,95)(50,86,58,94)(51,85,59,93)(52,84,60,92)(53,83,61,91)(54,82,62,90)(55,81,63,89)(56,96,64,88) );

G=PermutationGroup([[(1,30,49),(2,50,31),(3,32,51),(4,52,17),(5,18,53),(6,54,19),(7,20,55),(8,56,21),(9,22,57),(10,58,23),(11,24,59),(12,60,25),(13,26,61),(14,62,27),(15,28,63),(16,64,29),(33,84,73),(34,74,85),(35,86,75),(36,76,87),(37,88,77),(38,78,89),(39,90,79),(40,80,91),(41,92,65),(42,66,93),(43,94,67),(44,68,95),(45,96,69),(46,70,81),(47,82,71),(48,72,83)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)], [(1,36,9,44),(2,35,10,43),(3,34,11,42),(4,33,12,41),(5,48,13,40),(6,47,14,39),(7,46,15,38),(8,45,16,37),(17,73,25,65),(18,72,26,80),(19,71,27,79),(20,70,28,78),(21,69,29,77),(22,68,30,76),(23,67,31,75),(24,66,32,74),(49,87,57,95),(50,86,58,94),(51,85,59,93),(52,84,60,92),(53,83,61,91),(54,82,62,90),(55,81,63,89),(56,96,64,88)]])

C3⋊Q32 is a maximal subgroup of
SD32⋊S3  D6.2D8  S3×Q32  Q32⋊S3  C24.27C23  Q16.D6  D8.9D6  C9⋊Q32  C322Q32  C323Q32  C327Q32  C15⋊Q32  C3⋊Dic40  C157Q32
C3⋊Q32 is a maximal quotient of
C6.6D16  C6.Q32  C6.5Q32  C9⋊Q32  C322Q32  C323Q32  C327Q32  C15⋊Q32  C3⋊Dic40  C157Q32

Matrix representation of C3⋊Q32 in GL4(𝔽7) generated by

0052
5303
2503
5512
,
4232
1005
1634
0010
,
3012
1066
2253
1636
G:=sub<GL(4,GF(7))| [0,5,2,5,0,3,5,5,5,0,0,1,2,3,3,2],[4,1,1,0,2,0,6,0,3,0,3,1,2,5,4,0],[3,1,2,1,0,0,2,6,1,6,5,3,2,6,3,6] >;

C3⋊Q32 in GAP, Magma, Sage, TeX

C_3\rtimes Q_{32}
% in TeX

G:=Group("C3:Q32");
// GroupNames label

G:=SmallGroup(96,36);
// by ID

G=gap.SmallGroup(96,36);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-3,96,73,103,218,116,122,579,297,69,2309]);
// Polycyclic

G:=Group<a,b,c|a^3=b^16=1,c^2=b^8,b*a*b^-1=a^-1,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations

Export

Subgroup lattice of C3⋊Q32 in TeX
Character table of C3⋊Q32 in TeX

׿
×
𝔽