direct product, non-abelian, not soluble, A-group
Aliases: C2×A5, group of symmetries of a regular icosahedron (and its dual dodecahedron), SmallGroup(120,35)
Series: Chief►Derived ►Lower central ►Upper central
A5 — C2×A5 |
A5 — C2×A5 |
Character table of C2×A5
class | 1 | 2A | 2B | 2C | 3 | 5A | 5B | 6 | 10A | 10B | |
size | 1 | 1 | 15 | 15 | 20 | 12 | 12 | 20 | 12 | 12 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 3 | 3 | -1 | -1 | 0 | 1+√5/2 | 1-√5/2 | 0 | 1-√5/2 | 1+√5/2 | orthogonal lifted from A5 |
ρ4 | 3 | 3 | -1 | -1 | 0 | 1-√5/2 | 1+√5/2 | 0 | 1+√5/2 | 1-√5/2 | orthogonal lifted from A5 |
ρ5 | 3 | -3 | 1 | -1 | 0 | 1+√5/2 | 1-√5/2 | 0 | -1+√5/2 | -1-√5/2 | orthogonal faithful |
ρ6 | 3 | -3 | 1 | -1 | 0 | 1-√5/2 | 1+√5/2 | 0 | -1-√5/2 | -1+√5/2 | orthogonal faithful |
ρ7 | 4 | 4 | 0 | 0 | 1 | -1 | -1 | 1 | -1 | -1 | orthogonal lifted from A5 |
ρ8 | 4 | -4 | 0 | 0 | 1 | -1 | -1 | -1 | 1 | 1 | orthogonal faithful |
ρ9 | 5 | 5 | 1 | 1 | -1 | 0 | 0 | -1 | 0 | 0 | orthogonal lifted from A5 |
ρ10 | 5 | -5 | -1 | 1 | -1 | 0 | 0 | 1 | 0 | 0 | orthogonal faithful |
(1 2 3 4 5)(6 7 8 9 10)
(1 10)(2 6)(3 8)(4 9)(5 7)
G:=sub<Sym(10)| (1,2,3,4,5)(6,7,8,9,10), (1,10)(2,6)(3,8)(4,9)(5,7)>;
G:=Group( (1,2,3,4,5)(6,7,8,9,10), (1,10)(2,6)(3,8)(4,9)(5,7) );
G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10)], [(1,10),(2,6),(3,8),(4,9),(5,7)]])
G:=TransitiveGroup(10,11);
(3 4 5 6 7)(8 9 10 11 12)
(1 6)(2 11)(3 9)(4 8)(5 10)(7 12)
G:=sub<Sym(12)| (3,4,5,6,7)(8,9,10,11,12), (1,6)(2,11)(3,9)(4,8)(5,10)(7,12)>;
G:=Group( (3,4,5,6,7)(8,9,10,11,12), (1,6)(2,11)(3,9)(4,8)(5,10)(7,12) );
G=PermutationGroup([[(3,4,5,6,7),(8,9,10,11,12)], [(1,6),(2,11),(3,9),(4,8),(5,10),(7,12)]])
G:=TransitiveGroup(12,75);
(3 4 5 6 7)(8 9 10 11 12)
(1 11)(2 3)(5 9)(6 8)
G:=sub<Sym(12)| (3,4,5,6,7)(8,9,10,11,12), (1,11)(2,3)(5,9)(6,8)>;
G:=Group( (3,4,5,6,7)(8,9,10,11,12), (1,11)(2,3)(5,9)(6,8) );
G=PermutationGroup([[(3,4,5,6,7),(8,9,10,11,12)], [(1,11),(2,3),(5,9),(6,8)]])
G:=TransitiveGroup(12,76);
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)
(1 17)(2 19)(3 12)(4 13)(5 20)(6 11)(7 14)(8 18)(9 15)(10 16)
G:=sub<Sym(20)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20), (1,17)(2,19)(3,12)(4,13)(5,20)(6,11)(7,14)(8,18)(9,15)(10,16)>;
G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20), (1,17)(2,19)(3,12)(4,13)(5,20)(6,11)(7,14)(8,18)(9,15)(10,16) );
G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20)], [(1,17),(2,19),(3,12),(4,13),(5,20),(6,11),(7,14),(8,18),(9,15),(10,16)]])
G:=TransitiveGroup(20,31);
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)
(1 12)(2 18)(5 19)(8 15)(9 16)(10 14)(11 17)(13 20)
G:=sub<Sym(20)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20), (1,12)(2,18)(5,19)(8,15)(9,16)(10,14)(11,17)(13,20)>;
G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20), (1,12)(2,18)(5,19)(8,15)(9,16)(10,14)(11,17)(13,20) );
G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20)], [(1,12),(2,18),(5,19),(8,15),(9,16),(10,14),(11,17),(13,20)]])
G:=TransitiveGroup(20,36);
(5 6 7 8 9)(10 11 12 13 14)(15 16 17 18 19)(20 21 22 23 24)
(1 14)(2 5)(3 16)(4 22)(6 10)(7 19)(8 18)(9 13)(11 20)(12 24)(15 21)(17 23)
G:=sub<Sym(24)| (5,6,7,8,9)(10,11,12,13,14)(15,16,17,18,19)(20,21,22,23,24), (1,14)(2,5)(3,16)(4,22)(6,10)(7,19)(8,18)(9,13)(11,20)(12,24)(15,21)(17,23)>;
G:=Group( (5,6,7,8,9)(10,11,12,13,14)(15,16,17,18,19)(20,21,22,23,24), (1,14)(2,5)(3,16)(4,22)(6,10)(7,19)(8,18)(9,13)(11,20)(12,24)(15,21)(17,23) );
G=PermutationGroup([[(5,6,7,8,9),(10,11,12,13,14),(15,16,17,18,19),(20,21,22,23,24)], [(1,14),(2,5),(3,16),(4,22),(6,10),(7,19),(8,18),(9,13),(11,20),(12,24),(15,21),(17,23)]])
G:=TransitiveGroup(24,203);
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)
(1 21)(2 26)(3 19)(4 25)(7 13)(8 17)(9 28)(10 12)(11 16)(14 29)(15 23)(20 22)(24 30)
G:=sub<Sym(30)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,21)(2,26)(3,19)(4,25)(7,13)(8,17)(9,28)(10,12)(11,16)(14,29)(15,23)(20,22)(24,30)>;
G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,21)(2,26)(3,19)(4,25)(7,13)(8,17)(9,28)(10,12)(11,16)(14,29)(15,23)(20,22)(24,30) );
G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30)], [(1,21),(2,26),(3,19),(4,25),(7,13),(8,17),(9,28),(10,12),(11,16),(14,29),(15,23),(20,22),(24,30)]])
G:=TransitiveGroup(30,29);
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)
(1 23)(2 26)(3 28)(4 22)(5 8)(6 20)(7 13)(9 14)(10 18)(11 25)(12 30)(15 29)(16 24)(17 21)(19 27)
G:=sub<Sym(30)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,23)(2,26)(3,28)(4,22)(5,8)(6,20)(7,13)(9,14)(10,18)(11,25)(12,30)(15,29)(16,24)(17,21)(19,27)>;
G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,23)(2,26)(3,28)(4,22)(5,8)(6,20)(7,13)(9,14)(10,18)(11,25)(12,30)(15,29)(16,24)(17,21)(19,27) );
G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30)], [(1,23),(2,26),(3,28),(4,22),(5,8),(6,20),(7,13),(9,14),(10,18),(11,25),(12,30),(15,29),(16,24),(17,21),(19,27)]])
G:=TransitiveGroup(30,30);
C2×A5 is a maximal subgroup of
A5⋊C4
C2×A5 is a maximal quotient of C4.A5
action | f(x) | Disc(f) |
---|---|---|
10T11 | x10-18x8+93x6-188x4+156x2-45 | 210·314·55·734 |
12T75 | x12+7x8+7x4-8x2+1 | 248·674 |
12T76 | x12-6x11+3x10+40x9-58x8-74x7+160x6+13x5-128x4+35x3+18x2-4x-1 | 32·52·136134 |
Matrix representation of C2×A5 ►in GL3(𝔽5) generated by
4 | 3 | 0 |
2 | 3 | 0 |
2 | 1 | 1 |
1 | 0 | 0 |
3 | 0 | 4 |
3 | 4 | 0 |
G:=sub<GL(3,GF(5))| [4,2,2,3,3,1,0,0,1],[1,3,3,0,0,4,0,4,0] >;
C2×A5 in GAP, Magma, Sage, TeX
C_2\times A_5
% in TeX
G:=Group("C2xA5");
// GroupNames label
G:=SmallGroup(120,35);
// by ID
G=gap.SmallGroup(120,35);
# by ID
Export
Subgroup lattice of C2×A5 in TeX
Character table of C2×A5 in TeX