Copied to
clipboard

G = C5×D11order 110 = 2·5·11

Direct product of C5 and D11

direct product, metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: C5×D11, C552C2, C113C10, SmallGroup(110,4)

Series: Derived Chief Lower central Upper central

C1C11 — C5×D11
C1C11C55 — C5×D11
C11 — C5×D11
C1C5

Generators and relations for C5×D11
 G = < a,b,c | a5=b11=c2=1, ab=ba, ac=ca, cbc=b-1 >

11C2
11C10

Smallest permutation representation of C5×D11
On 55 points
Generators in S55
(1 54 43 32 21)(2 55 44 33 22)(3 45 34 23 12)(4 46 35 24 13)(5 47 36 25 14)(6 48 37 26 15)(7 49 38 27 16)(8 50 39 28 17)(9 51 40 29 18)(10 52 41 30 19)(11 53 42 31 20)
(1 2 3 4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33)(34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55)
(1 11)(2 10)(3 9)(4 8)(5 7)(12 18)(13 17)(14 16)(19 22)(20 21)(23 29)(24 28)(25 27)(30 33)(31 32)(34 40)(35 39)(36 38)(41 44)(42 43)(45 51)(46 50)(47 49)(52 55)(53 54)

G:=sub<Sym(55)| (1,54,43,32,21)(2,55,44,33,22)(3,45,34,23,12)(4,46,35,24,13)(5,47,36,25,14)(6,48,37,26,15)(7,49,38,27,16)(8,50,39,28,17)(9,51,40,29,18)(10,52,41,30,19)(11,53,42,31,20), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55), (1,11)(2,10)(3,9)(4,8)(5,7)(12,18)(13,17)(14,16)(19,22)(20,21)(23,29)(24,28)(25,27)(30,33)(31,32)(34,40)(35,39)(36,38)(41,44)(42,43)(45,51)(46,50)(47,49)(52,55)(53,54)>;

G:=Group( (1,54,43,32,21)(2,55,44,33,22)(3,45,34,23,12)(4,46,35,24,13)(5,47,36,25,14)(6,48,37,26,15)(7,49,38,27,16)(8,50,39,28,17)(9,51,40,29,18)(10,52,41,30,19)(11,53,42,31,20), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55), (1,11)(2,10)(3,9)(4,8)(5,7)(12,18)(13,17)(14,16)(19,22)(20,21)(23,29)(24,28)(25,27)(30,33)(31,32)(34,40)(35,39)(36,38)(41,44)(42,43)(45,51)(46,50)(47,49)(52,55)(53,54) );

G=PermutationGroup([[(1,54,43,32,21),(2,55,44,33,22),(3,45,34,23,12),(4,46,35,24,13),(5,47,36,25,14),(6,48,37,26,15),(7,49,38,27,16),(8,50,39,28,17),(9,51,40,29,18),(10,52,41,30,19),(11,53,42,31,20)], [(1,2,3,4,5,6,7,8,9,10,11),(12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33),(34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55)], [(1,11),(2,10),(3,9),(4,8),(5,7),(12,18),(13,17),(14,16),(19,22),(20,21),(23,29),(24,28),(25,27),(30,33),(31,32),(34,40),(35,39),(36,38),(41,44),(42,43),(45,51),(46,50),(47,49),(52,55),(53,54)]])

35 conjugacy classes

class 1  2 5A5B5C5D10A10B10C10D11A···11E55A···55T
order1255551010101011···1155···55
size1111111111111112···22···2

35 irreducible representations

dim111122
type+++
imageC1C2C5C10D11C5×D11
kernelC5×D11C55D11C11C5C1
# reps1144520

Matrix representation of C5×D11 in GL2(𝔽331) generated by

3230
0323
,
3301
206124
,
3300
2061
G:=sub<GL(2,GF(331))| [323,0,0,323],[330,206,1,124],[330,206,0,1] >;

C5×D11 in GAP, Magma, Sage, TeX

C_5\times D_{11}
% in TeX

G:=Group("C5xD11");
// GroupNames label

G:=SmallGroup(110,4);
// by ID

G=gap.SmallGroup(110,4);
# by ID

G:=PCGroup([3,-2,-5,-11,902]);
// Polycyclic

G:=Group<a,b,c|a^5=b^11=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C5×D11 in TeX

׿
×
𝔽