Extensions 1→N→G→Q→1 with N=C5×Dic3 and Q=C2

Direct product G=N×Q with N=C5×Dic3 and Q=C2
dρLabelID
C10×Dic3120C10xDic3120,24

Semidirect products G=N:Q with N=C5×Dic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5×Dic3)⋊1C2 = D5×Dic3φ: C2/C1C2 ⊆ Out C5×Dic3604-(C5xDic3):1C2120,8
(C5×Dic3)⋊2C2 = D30.C2φ: C2/C1C2 ⊆ Out C5×Dic3604+(C5xDic3):2C2120,10
(C5×Dic3)⋊3C2 = C3⋊D20φ: C2/C1C2 ⊆ Out C5×Dic3604+(C5xDic3):3C2120,12
(C5×Dic3)⋊4C2 = C5×C3⋊D4φ: C2/C1C2 ⊆ Out C5×Dic3602(C5xDic3):4C2120,25
(C5×Dic3)⋊5C2 = S3×C20φ: trivial image602(C5xDic3):5C2120,22

Non-split extensions G=N.Q with N=C5×Dic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5×Dic3).1C2 = C15⋊Q8φ: C2/C1C2 ⊆ Out C5×Dic31204-(C5xDic3).1C2120,14
(C5×Dic3).2C2 = C5×Dic6φ: C2/C1C2 ⊆ Out C5×Dic31202(C5xDic3).2C2120,21

׿
×
𝔽