extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(C3×S3) = C3×Dic9 | φ: C3×S3/C32 → C2 ⊆ Aut C6 | 36 | 2 | C6.1(C3xS3) | 108,6 |
C6.2(C3×S3) = C32⋊C12 | φ: C3×S3/C32 → C2 ⊆ Aut C6 | 36 | 6- | C6.2(C3xS3) | 108,8 |
C6.3(C3×S3) = C9⋊C12 | φ: C3×S3/C32 → C2 ⊆ Aut C6 | 36 | 6- | C6.3(C3xS3) | 108,9 |
C6.4(C3×S3) = C6×D9 | φ: C3×S3/C32 → C2 ⊆ Aut C6 | 36 | 2 | C6.4(C3xS3) | 108,23 |
C6.5(C3×S3) = C2×C32⋊C6 | φ: C3×S3/C32 → C2 ⊆ Aut C6 | 18 | 6+ | C6.5(C3xS3) | 108,25 |
C6.6(C3×S3) = C2×C9⋊C6 | φ: C3×S3/C32 → C2 ⊆ Aut C6 | 18 | 6+ | C6.6(C3xS3) | 108,26 |
C6.7(C3×S3) = C3×C3⋊Dic3 | φ: C3×S3/C32 → C2 ⊆ Aut C6 | 36 | | C6.7(C3xS3) | 108,33 |
C6.8(C3×S3) = C9×Dic3 | central extension (φ=1) | 36 | 2 | C6.8(C3xS3) | 108,7 |
C6.9(C3×S3) = S3×C18 | central extension (φ=1) | 36 | 2 | C6.9(C3xS3) | 108,24 |
C6.10(C3×S3) = C32×Dic3 | central extension (φ=1) | 36 | | C6.10(C3xS3) | 108,32 |