Extensions 1→N→G→Q→1 with N=C6 and Q=C3×S3

Direct product G=N×Q with N=C6 and Q=C3×S3

Semidirect products G=N:Q with N=C6 and Q=C3×S3
extensionφ:Q→Aut NdρLabelID
C6⋊(C3×S3) = C6×C3⋊S3φ: C3×S3/C32C2 ⊆ Aut C636C6:(C3xS3)108,43

Non-split extensions G=N.Q with N=C6 and Q=C3×S3
extensionφ:Q→Aut NdρLabelID
C6.1(C3×S3) = C3×Dic9φ: C3×S3/C32C2 ⊆ Aut C6362C6.1(C3xS3)108,6
C6.2(C3×S3) = C32⋊C12φ: C3×S3/C32C2 ⊆ Aut C6366-C6.2(C3xS3)108,8
C6.3(C3×S3) = C9⋊C12φ: C3×S3/C32C2 ⊆ Aut C6366-C6.3(C3xS3)108,9
C6.4(C3×S3) = C6×D9φ: C3×S3/C32C2 ⊆ Aut C6362C6.4(C3xS3)108,23
C6.5(C3×S3) = C2×C32⋊C6φ: C3×S3/C32C2 ⊆ Aut C6186+C6.5(C3xS3)108,25
C6.6(C3×S3) = C2×C9⋊C6φ: C3×S3/C32C2 ⊆ Aut C6186+C6.6(C3xS3)108,26
C6.7(C3×S3) = C3×C3⋊Dic3φ: C3×S3/C32C2 ⊆ Aut C636C6.7(C3xS3)108,33
C6.8(C3×S3) = C9×Dic3central extension (φ=1)362C6.8(C3xS3)108,7
C6.9(C3×S3) = S3×C18central extension (φ=1)362C6.9(C3xS3)108,24
C6.10(C3×S3) = C32×Dic3central extension (φ=1)36C6.10(C3xS3)108,32