extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C6).1S3 = C32⋊C12 | φ: S3/C1 → S3 ⊆ Aut C3×C6 | 36 | 6- | (C3xC6).1S3 | 108,8 |
(C3×C6).2S3 = C9⋊C12 | φ: S3/C1 → S3 ⊆ Aut C3×C6 | 36 | 6- | (C3xC6).2S3 | 108,9 |
(C3×C6).3S3 = He3⋊3C4 | φ: S3/C1 → S3 ⊆ Aut C3×C6 | 36 | 3 | (C3xC6).3S3 | 108,11 |
(C3×C6).4S3 = C2×C9⋊C6 | φ: S3/C1 → S3 ⊆ Aut C3×C6 | 18 | 6+ | (C3xC6).4S3 | 108,26 |
(C3×C6).5S3 = C3×Dic9 | φ: S3/C3 → C2 ⊆ Aut C3×C6 | 36 | 2 | (C3xC6).5S3 | 108,6 |
(C3×C6).6S3 = C9⋊Dic3 | φ: S3/C3 → C2 ⊆ Aut C3×C6 | 108 | | (C3xC6).6S3 | 108,10 |
(C3×C6).7S3 = C6×D9 | φ: S3/C3 → C2 ⊆ Aut C3×C6 | 36 | 2 | (C3xC6).7S3 | 108,23 |
(C3×C6).8S3 = C2×C9⋊S3 | φ: S3/C3 → C2 ⊆ Aut C3×C6 | 54 | | (C3xC6).8S3 | 108,27 |
(C3×C6).9S3 = C3×C3⋊Dic3 | φ: S3/C3 → C2 ⊆ Aut C3×C6 | 36 | | (C3xC6).9S3 | 108,33 |
(C3×C6).10S3 = C33⋊5C4 | φ: S3/C3 → C2 ⊆ Aut C3×C6 | 108 | | (C3xC6).10S3 | 108,34 |
(C3×C6).11S3 = C32×Dic3 | central extension (φ=1) | 36 | | (C3xC6).11S3 | 108,32 |