Extensions 1→N→G→Q→1 with N=C3xC6 and Q=S3

Direct product G=NxQ with N=C3xC6 and Q=S3
dρLabelID
S3xC3xC636S3xC3xC6108,42

Semidirect products G=N:Q with N=C3xC6 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C3xC6):1S3 = C2xC32:C6φ: S3/C1S3 ⊆ Aut C3xC6186+(C3xC6):1S3108,25
(C3xC6):2S3 = C2xHe3:C2φ: S3/C1S3 ⊆ Aut C3xC6183(C3xC6):2S3108,28
(C3xC6):3S3 = C6xC3:S3φ: S3/C3C2 ⊆ Aut C3xC636(C3xC6):3S3108,43
(C3xC6):4S3 = C2xC33:C2φ: S3/C3C2 ⊆ Aut C3xC654(C3xC6):4S3108,44

Non-split extensions G=N.Q with N=C3xC6 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C3xC6).1S3 = C32:C12φ: S3/C1S3 ⊆ Aut C3xC6366-(C3xC6).1S3108,8
(C3xC6).2S3 = C9:C12φ: S3/C1S3 ⊆ Aut C3xC6366-(C3xC6).2S3108,9
(C3xC6).3S3 = He3:3C4φ: S3/C1S3 ⊆ Aut C3xC6363(C3xC6).3S3108,11
(C3xC6).4S3 = C2xC9:C6φ: S3/C1S3 ⊆ Aut C3xC6186+(C3xC6).4S3108,26
(C3xC6).5S3 = C3xDic9φ: S3/C3C2 ⊆ Aut C3xC6362(C3xC6).5S3108,6
(C3xC6).6S3 = C9:Dic3φ: S3/C3C2 ⊆ Aut C3xC6108(C3xC6).6S3108,10
(C3xC6).7S3 = C6xD9φ: S3/C3C2 ⊆ Aut C3xC6362(C3xC6).7S3108,23
(C3xC6).8S3 = C2xC9:S3φ: S3/C3C2 ⊆ Aut C3xC654(C3xC6).8S3108,27
(C3xC6).9S3 = C3xC3:Dic3φ: S3/C3C2 ⊆ Aut C3xC636(C3xC6).9S3108,33
(C3xC6).10S3 = C33:5C4φ: S3/C3C2 ⊆ Aut C3xC6108(C3xC6).10S3108,34
(C3xC6).11S3 = C32xDic3central extension (φ=1)36(C3xC6).11S3108,32

׿
x
:
Z
F
o
wr
Q
<