Extensions 1→N→G→Q→1 with N=C10 and Q=C2×C6

Direct product G=N×Q with N=C10 and Q=C2×C6

Semidirect products G=N:Q with N=C10 and Q=C2×C6
extensionφ:Q→Aut NdρLabelID
C10⋊(C2×C6) = D5×C2×C6φ: C2×C6/C6C2 ⊆ Aut C1060C10:(C2xC6)120,44

Non-split extensions G=N.Q with N=C10 and Q=C2×C6
extensionφ:Q→Aut NdρLabelID
C10.1(C2×C6) = C3×Dic10φ: C2×C6/C6C2 ⊆ Aut C101202C10.1(C2xC6)120,16
C10.2(C2×C6) = D5×C12φ: C2×C6/C6C2 ⊆ Aut C10602C10.2(C2xC6)120,17
C10.3(C2×C6) = C3×D20φ: C2×C6/C6C2 ⊆ Aut C10602C10.3(C2xC6)120,18
C10.4(C2×C6) = C6×Dic5φ: C2×C6/C6C2 ⊆ Aut C10120C10.4(C2xC6)120,19
C10.5(C2×C6) = C3×C5⋊D4φ: C2×C6/C6C2 ⊆ Aut C10602C10.5(C2xC6)120,20
C10.6(C2×C6) = D4×C15central extension (φ=1)602C10.6(C2xC6)120,32
C10.7(C2×C6) = Q8×C15central extension (φ=1)1202C10.7(C2xC6)120,33