Copied to
clipboard

G = Q8×C15order 120 = 23·3·5

Direct product of C15 and Q8

direct product, metacyclic, nilpotent (class 2), monomial, 2-elementary

Aliases: Q8×C15, C4.C30, C60.7C2, C20.3C6, C12.3C10, C30.24C22, C10.7(C2×C6), C2.2(C2×C30), C6.7(C2×C10), SmallGroup(120,33)

Series: Derived Chief Lower central Upper central

C1C2 — Q8×C15
C1C2C10C30C60 — Q8×C15
C1C2 — Q8×C15
C1C30 — Q8×C15

Generators and relations for Q8×C15
 G = < a,b,c | a15=b4=1, c2=b2, ab=ba, ac=ca, cbc-1=b-1 >


Smallest permutation representation of Q8×C15
Regular action on 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 104 37 75)(2 105 38 61)(3 91 39 62)(4 92 40 63)(5 93 41 64)(6 94 42 65)(7 95 43 66)(8 96 44 67)(9 97 45 68)(10 98 31 69)(11 99 32 70)(12 100 33 71)(13 101 34 72)(14 102 35 73)(15 103 36 74)(16 52 88 115)(17 53 89 116)(18 54 90 117)(19 55 76 118)(20 56 77 119)(21 57 78 120)(22 58 79 106)(23 59 80 107)(24 60 81 108)(25 46 82 109)(26 47 83 110)(27 48 84 111)(28 49 85 112)(29 50 86 113)(30 51 87 114)
(1 116 37 53)(2 117 38 54)(3 118 39 55)(4 119 40 56)(5 120 41 57)(6 106 42 58)(7 107 43 59)(8 108 44 60)(9 109 45 46)(10 110 31 47)(11 111 32 48)(12 112 33 49)(13 113 34 50)(14 114 35 51)(15 115 36 52)(16 103 88 74)(17 104 89 75)(18 105 90 61)(19 91 76 62)(20 92 77 63)(21 93 78 64)(22 94 79 65)(23 95 80 66)(24 96 81 67)(25 97 82 68)(26 98 83 69)(27 99 84 70)(28 100 85 71)(29 101 86 72)(30 102 87 73)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,104,37,75)(2,105,38,61)(3,91,39,62)(4,92,40,63)(5,93,41,64)(6,94,42,65)(7,95,43,66)(8,96,44,67)(9,97,45,68)(10,98,31,69)(11,99,32,70)(12,100,33,71)(13,101,34,72)(14,102,35,73)(15,103,36,74)(16,52,88,115)(17,53,89,116)(18,54,90,117)(19,55,76,118)(20,56,77,119)(21,57,78,120)(22,58,79,106)(23,59,80,107)(24,60,81,108)(25,46,82,109)(26,47,83,110)(27,48,84,111)(28,49,85,112)(29,50,86,113)(30,51,87,114), (1,116,37,53)(2,117,38,54)(3,118,39,55)(4,119,40,56)(5,120,41,57)(6,106,42,58)(7,107,43,59)(8,108,44,60)(9,109,45,46)(10,110,31,47)(11,111,32,48)(12,112,33,49)(13,113,34,50)(14,114,35,51)(15,115,36,52)(16,103,88,74)(17,104,89,75)(18,105,90,61)(19,91,76,62)(20,92,77,63)(21,93,78,64)(22,94,79,65)(23,95,80,66)(24,96,81,67)(25,97,82,68)(26,98,83,69)(27,99,84,70)(28,100,85,71)(29,101,86,72)(30,102,87,73)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,104,37,75)(2,105,38,61)(3,91,39,62)(4,92,40,63)(5,93,41,64)(6,94,42,65)(7,95,43,66)(8,96,44,67)(9,97,45,68)(10,98,31,69)(11,99,32,70)(12,100,33,71)(13,101,34,72)(14,102,35,73)(15,103,36,74)(16,52,88,115)(17,53,89,116)(18,54,90,117)(19,55,76,118)(20,56,77,119)(21,57,78,120)(22,58,79,106)(23,59,80,107)(24,60,81,108)(25,46,82,109)(26,47,83,110)(27,48,84,111)(28,49,85,112)(29,50,86,113)(30,51,87,114), (1,116,37,53)(2,117,38,54)(3,118,39,55)(4,119,40,56)(5,120,41,57)(6,106,42,58)(7,107,43,59)(8,108,44,60)(9,109,45,46)(10,110,31,47)(11,111,32,48)(12,112,33,49)(13,113,34,50)(14,114,35,51)(15,115,36,52)(16,103,88,74)(17,104,89,75)(18,105,90,61)(19,91,76,62)(20,92,77,63)(21,93,78,64)(22,94,79,65)(23,95,80,66)(24,96,81,67)(25,97,82,68)(26,98,83,69)(27,99,84,70)(28,100,85,71)(29,101,86,72)(30,102,87,73) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,104,37,75),(2,105,38,61),(3,91,39,62),(4,92,40,63),(5,93,41,64),(6,94,42,65),(7,95,43,66),(8,96,44,67),(9,97,45,68),(10,98,31,69),(11,99,32,70),(12,100,33,71),(13,101,34,72),(14,102,35,73),(15,103,36,74),(16,52,88,115),(17,53,89,116),(18,54,90,117),(19,55,76,118),(20,56,77,119),(21,57,78,120),(22,58,79,106),(23,59,80,107),(24,60,81,108),(25,46,82,109),(26,47,83,110),(27,48,84,111),(28,49,85,112),(29,50,86,113),(30,51,87,114)], [(1,116,37,53),(2,117,38,54),(3,118,39,55),(4,119,40,56),(5,120,41,57),(6,106,42,58),(7,107,43,59),(8,108,44,60),(9,109,45,46),(10,110,31,47),(11,111,32,48),(12,112,33,49),(13,113,34,50),(14,114,35,51),(15,115,36,52),(16,103,88,74),(17,104,89,75),(18,105,90,61),(19,91,76,62),(20,92,77,63),(21,93,78,64),(22,94,79,65),(23,95,80,66),(24,96,81,67),(25,97,82,68),(26,98,83,69),(27,99,84,70),(28,100,85,71),(29,101,86,72),(30,102,87,73)]])

Q8×C15 is a maximal subgroup of   Q82D15  C157Q16  Q83D15

75 conjugacy classes

class 1  2 3A3B4A4B4C5A5B5C5D6A6B10A10B10C10D12A···12F15A···15H20A···20L30A···30H60A···60X
order12334445555661010101012···1215···1520···2030···3060···60
size111122211111111112···21···12···21···12···2

75 irreducible representations

dim111111112222
type++-
imageC1C2C3C5C6C10C15C30Q8C3×Q8C5×Q8Q8×C15
kernelQ8×C15C60C5×Q8C3×Q8C20C12Q8C4C15C5C3C1
# reps13246128241248

Matrix representation of Q8×C15 in GL2(𝔽31) generated by

200
020
,
2717
304
,
018
120
G:=sub<GL(2,GF(31))| [20,0,0,20],[27,30,17,4],[0,12,18,0] >;

Q8×C15 in GAP, Magma, Sage, TeX

Q_8\times C_{15}
% in TeX

G:=Group("Q8xC15");
// GroupNames label

G:=SmallGroup(120,33);
// by ID

G=gap.SmallGroup(120,33);
# by ID

G:=PCGroup([5,-2,-2,-3,-5,-2,300,621,306]);
// Polycyclic

G:=Group<a,b,c|a^15=b^4=1,c^2=b^2,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations

Export

Subgroup lattice of Q8×C15 in TeX

׿
×
𝔽