Copied to
clipboard

G = C325C4order 128 = 27

3rd semidirect product of C32 and C4 acting via C4/C2=C2

p-group, metacyclic, nilpotent (class 2), monomial

Aliases: C325C4, C16.4C8, C8.2C16, C42.4C8, C8.20C42, C2.1M6(2), (C2×C8).15C8, (C2×C4).2C16, (C4×C8).33C4, (C2×C32).7C2, C2.3(C4×C16), C4.12(C4×C8), C8.28(C2×C8), (C4×C16).16C2, C16.24(C2×C4), (C2×C16).17C4, C4.12(C2×C16), C22.7(C2×C16), (C2×C16).108C22, (C2×C4).95(C2×C8), (C2×C8).259(C2×C4), SmallGroup(128,129)

Series: Derived Chief Lower central Upper central Jennings

C1C2 — C325C4
C1C2C4C8C2×C8C2×C16C4×C16 — C325C4
C1C2 — C325C4
C1C2×C16 — C325C4
C1C2C2C2C2C2C2C2C2C4C4C4C4C8C8C2×C16 — C325C4

Generators and relations for C325C4
 G = < a,b | a32=b4=1, bab-1=a17 >

2C4
2C4

Smallest permutation representation of C325C4
Regular action on 128 points
Generators in S128
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)
(1 51 84 109)(2 36 85 126)(3 53 86 111)(4 38 87 128)(5 55 88 113)(6 40 89 98)(7 57 90 115)(8 42 91 100)(9 59 92 117)(10 44 93 102)(11 61 94 119)(12 46 95 104)(13 63 96 121)(14 48 65 106)(15 33 66 123)(16 50 67 108)(17 35 68 125)(18 52 69 110)(19 37 70 127)(20 54 71 112)(21 39 72 97)(22 56 73 114)(23 41 74 99)(24 58 75 116)(25 43 76 101)(26 60 77 118)(27 45 78 103)(28 62 79 120)(29 47 80 105)(30 64 81 122)(31 49 82 107)(32 34 83 124)

G:=sub<Sym(128)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128), (1,51,84,109)(2,36,85,126)(3,53,86,111)(4,38,87,128)(5,55,88,113)(6,40,89,98)(7,57,90,115)(8,42,91,100)(9,59,92,117)(10,44,93,102)(11,61,94,119)(12,46,95,104)(13,63,96,121)(14,48,65,106)(15,33,66,123)(16,50,67,108)(17,35,68,125)(18,52,69,110)(19,37,70,127)(20,54,71,112)(21,39,72,97)(22,56,73,114)(23,41,74,99)(24,58,75,116)(25,43,76,101)(26,60,77,118)(27,45,78,103)(28,62,79,120)(29,47,80,105)(30,64,81,122)(31,49,82,107)(32,34,83,124)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128), (1,51,84,109)(2,36,85,126)(3,53,86,111)(4,38,87,128)(5,55,88,113)(6,40,89,98)(7,57,90,115)(8,42,91,100)(9,59,92,117)(10,44,93,102)(11,61,94,119)(12,46,95,104)(13,63,96,121)(14,48,65,106)(15,33,66,123)(16,50,67,108)(17,35,68,125)(18,52,69,110)(19,37,70,127)(20,54,71,112)(21,39,72,97)(22,56,73,114)(23,41,74,99)(24,58,75,116)(25,43,76,101)(26,60,77,118)(27,45,78,103)(28,62,79,120)(29,47,80,105)(30,64,81,122)(31,49,82,107)(32,34,83,124) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)], [(1,51,84,109),(2,36,85,126),(3,53,86,111),(4,38,87,128),(5,55,88,113),(6,40,89,98),(7,57,90,115),(8,42,91,100),(9,59,92,117),(10,44,93,102),(11,61,94,119),(12,46,95,104),(13,63,96,121),(14,48,65,106),(15,33,66,123),(16,50,67,108),(17,35,68,125),(18,52,69,110),(19,37,70,127),(20,54,71,112),(21,39,72,97),(22,56,73,114),(23,41,74,99),(24,58,75,116),(25,43,76,101),(26,60,77,118),(27,45,78,103),(28,62,79,120),(29,47,80,105),(30,64,81,122),(31,49,82,107),(32,34,83,124)]])

80 conjugacy classes

class 1 2A2B2C4A4B4C4D4E4F4G4H8A···8H8I8J8K8L16A···16P16Q···16X32A···32AF
order1222444444448···8888816···1616···1632···32
size1111111122221···122221···12···22···2

80 irreducible representations

dim111111111112
type+++
imageC1C2C2C4C4C4C8C8C8C16C16M6(2)
kernelC325C4C4×C16C2×C32C32C4×C8C2×C16C16C42C2×C8C8C2×C4C2
# reps112822844161616

Matrix representation of C325C4 in GL3(𝔽97) generated by

9600
02530
03072
,
7500
001
0960
G:=sub<GL(3,GF(97))| [96,0,0,0,25,30,0,30,72],[75,0,0,0,0,96,0,1,0] >;

C325C4 in GAP, Magma, Sage, TeX

C_{32}\rtimes_5C_4
% in TeX

G:=Group("C32:5C4");
// GroupNames label

G:=SmallGroup(128,129);
// by ID

G=gap.SmallGroup(128,129);
# by ID

G:=PCGroup([7,-2,2,-2,2,-2,-2,-2,28,925,64,100,102,124]);
// Polycyclic

G:=Group<a,b|a^32=b^4=1,b*a*b^-1=a^17>;
// generators/relations

Export

Subgroup lattice of C325C4 in TeX

׿
×
𝔽